期刊文献+

基于最优划分的K-Means初始聚类中心选取算法 被引量:62

Algorithm for Initialization of K-Means Clustering Center Based on Optimized-Division
在线阅读 下载PDF
导出
摘要 针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自身分布特点确定K-Means算法的初始聚类中心,无需预设k值,减少了算法结果对参数的依赖,提高算法运算效率及准确率。实验结果表明,利用该算法改进的K-Means算法,运算时间明显减少,其聚类结果准确率以及算法效率均得到显著提高。 In process of clustering with traditional K-Means algorithm, it is difficult to identify the value of the number of clusters k, while the accuracy and efficiency of algorithm is reduced when it selects the cluster centers randomly. An algorithm for initialization of K-Means clustering center based on optimized division was proposed. This new algorithm could divide the data sample space optimized with histogram method, and identify the initial cluster centers obeying the natural character of data space. Experiment results demonstrate that the times of iterate in the process of K-Means algorithm is diseased clearly, and the accuracy of cluster results and efficiency of algorithm has been improved.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2586-2590,共5页 Journal of System Simulation
基金 国家自然科学基金项目(60873037)
关键词 K—Means算法 初始聚类中心 直方图 最优划分方法 K-Means algorithm initial clustering centers histogram optimized-division method
  • 相关文献

参考文献12

二级参考文献25

  • 1吴景岚,朱文兴.基于K均值的迭代局部搜索聚类算法[J].计算机工程与应用,2004,40(22):37-41. 被引量:8
  • 2[1]PS. Bradley , UsamaM. Fayyad. ScalmSclusteringalgorithms to largedatabases [ J ]. Knowledge Discovery and Data Mining,1998,16(3) :9 - 15.
  • 3[2]Dimitrios Charalampidis, Takis Kasparis. Wavelet-Based Rotational lnvariant Roughness Features for Texture Classification and Segmentation[ J ]. IEEE Transactions on lmage Processing,2002,11 ( 8 ): 825 - 837.
  • 4[5]H. Frigui, R. Krishuapuram. Clustering by competitive ugglomeration[ J]. Pattern Recognition, 1997,30 ( 7 ): 1223 -1232.
  • 5[6]Siddheswar Ray, Rose H. Turi. Determination of number of clusters in K-means clustering and application in color image segmentation, proceedings of the 4th Intemational Conference on Advances in Pattern Recognition and Digital Techniques ( ICAPRDT99 ) [ J ]. Calcutta, India, 1999,20(4) :27 -29.
  • 6Wu D, Hou Y T, Zhang Y Q. Transporting Real-time Video over the Intemet Challenges and Approaches[J].Proceeding of the IEEE, 2000, 88(12):1855-1875.
  • 7Fine Granularity Scalable. MPEG4 Standards[S]. ISO/IEC JTC 1/SC 29/WG 11 ISO/IEC JTC1/SC 29/WG 11 N3518. Beijing,2000, 07.
  • 8Pena J M, Lozano J A, Larranaga P. An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm[J].Pattern Recognition Letters, 1999, 20: 1027-1040.
  • 9Sergios Theodoridis,Konstantinos Koutroumbas.Pattern Recognition[M].电子工业出版社,2004.
  • 10Han J W,Kamber M.Data mining concepts and techniques[M].Singapore:Elesvier Inc,2006:402-404.

共引文献254

同被引文献465

引证文献62

二级引证文献436

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部