期刊文献+

固溶处理时间对2E12铝合金组织和疲劳性能的影响 被引量:13

Effect of Solution Treatment Time on Microstructures and Fatigue Properties of Aluminum Alloy 2E12
原文传递
导出
摘要 采用光学金相、扫描电镜、能谱分析以及疲劳寿命测试等方法,研究了495℃/1h和8h固溶处理对2E12-T4铝合金微观组织和疲劳性能的影响。实验结果表明,延长固溶处理时间可显著减少基体中可溶的Al2CuMg残留相数量,提高合金元素的过饱和固溶度,因而,自然时效后合金强度相应增加。试样自由表面上的大尺寸残留相在疲劳加载过程中,通过自身断裂或与基体脱粘的两种方式优先诱发疲劳裂纹萌生;并且,这些大尺寸残留相还起到促进疲劳裂纹扩展和连接的作用,导致疲劳辉纹形成时发生开裂形成二次裂纹,因而,延长固溶处理时间减少大尺寸残留相数量可提高2E12铝合金的疲劳寿命。 The effect of solution treatment at 495℃ for 1 h and 8 h on the microstructures and fatigue properties of aluminum alloy 2E12 is investigated by optical microscopy, scanning electron microscopy, X-ray energy dispersive spectrum and fatigue life testing. The amount of residual AlzCuMg phases is greatly reduced after solution treatment at 495 ℃ for 8 h, which enhances the solid solubility of Cu and Mg in the matrix after water quenching. Therefore, the strength of the alloy is increased after T4 temper. The residual phases of larger sizes on the free surfaces of the specimens initiate fatigue crack by two types: self-fracture of particles and detachment from the matrix. The presence of larger size particles also accelerates the growth of fatigue crack into the matrix, causes the connection between fatigue cracks with the minimum distance and promoted fatigue striations to form secondary cracks. Therefore, reducing the amount of residue phases by increasing solution treatment time may increase the fatigue life of aluminum alloy 2E12.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第1期148-152,共5页 Acta Aeronautica et Astronautica Sinica
基金 国家“973”基础研究(2005CB623705)
关键词 铝合金 固溶处理 疲劳 残留相 微观组织 aluminum alloy solution treatment fatigue residual phase microstructure
  • 相关文献

参考文献15

  • 1杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005,19(2):76-80. 被引量:206
  • 2Srivatsan T S, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524[J]. Materials Design, 2002,23(2) : 129 -139.
  • 3Srivatsan T S, Kolar D, Magnusen P. Influence of temperature on cyclic stress response, strain resistance, and fracture behavior of aluminum alloy 2524[J]. Materials Science and Engineering: A, 2001, 314(1/2) : 118-130.
  • 4Debartolo E A, Hillberry B M. A model of initial flaw sizes in aluminum alloys[J]. International Journal of Fatigue, 2001, 23(S1) :79-86.
  • 5Golden P J, Grandt A F, Bray G H. A comparison of fatigue crack formation at holes in 2024 T3 and 2524-T3 alu minum alloy specimens[J].International Journal of Fa tigue, 1999, 21(S1):211-219.
  • 6陈文.先进铝合金在A380上的应用[J].航空维修与工程,2005(2):40-41. 被引量:42
  • 7Smith B. The Boeing 777 [J]. Advanced Materials and Processes, 2003,161(9) :41-44.
  • 8Williams J C, Starke E A. Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003,51 (19):5775-5799.
  • 9陈康华,刘允中,刘红卫.7075和2024铝合金的固溶组织与力学性能[J].中国有色金属学报,2000,10(6):819-822. 被引量:81
  • 10Mondolfo L F. Aluminum alloys: structures and properties[M]. London Boston: Butter Worths, 1976.

二级参考文献30

  • 1Heinz A,et al. Recent development in aluminum alloys for aerospace applications. Mater Sci Eng, 2000,A280: 102.
  • 2Staley James T, Liu John,Hunt Warren H Jr. Aluminum alloys for aerostructures. Adv Mater Proc, 1997,10: 17.
  • 3Filatov Y A,et al. New Al-Mg-Sc alloys. Mater Sci Eng,2000,A280:97.
  • 4Wu Y L, Li C G,et al. Microalloying of Sc,Ni and Ce in an advanced Al-Zn-Mg-Cu alloy. Metall Trans, 1999, 30A (4):1017.
  • 5Liu J,Kulak M. A New paradigm in the design of aluminum alloys for aerospace applications. Mater Sci Forum,2000,331-337:127.
  • 6Rogacki J R. Materials for air and space. Adv Mater Proc,2000, (9) :63.
  • 7Bucci R J, Warren C J,et al. Need for new materials in aging aircraft structures. J Aircraft, 2000,37(1) : 122.
  • 8Matsuoka H, Hiros Y, Kishi Y,et al. Experimental study on strengthening mechanism of Al-Zn-Mg-Cu system alloy.J Soc Mat Sci Japan,1997,46(6):655.
  • 9Waterloo G, Hansen V, Gjonnes J, Skjervold S R. Effect of predeformation and presaging at room temperature in Al-Zn-Mg- (Cu,Zr) alloys. Mat Sci Eng, 2001 ,A303: 226.
  • 10Senatorova O G,Frindlyander I N. Influence of machining on residual stresses and properties of superhigh strength B96ц thin elements. Mater Sci Forum, 2002,396-402:1597.

共引文献327

同被引文献167

引证文献13

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部