期刊文献+

苹果酒发酵过程中糖度近红外光谱检测模型的建立 被引量:12

Modeling of Sugar Content Based on NIRS During Cider-Making Fermentation
在线阅读 下载PDF
导出
摘要 在苹果酒发酵过程中,由于糖度变化幅度很大且酒体基质始终处于动态变化之中,文章采用分阶段处理结合人工神经网络法对不同发酵阶段的糖度检测、监测近红外光谱模型的建立进行了探讨。不同建模方法的比较结果表明采用减去一条直线法预处理光谱,阶段Ⅰ建模光谱范围选择75026472.1cm^-1阶段Ⅱ建模光谱范围选择6102-5446.2cm。时,阶段Ⅰ模型的R^2为98.93%,RMSECV为4.42g·L^-1;阶段Ⅱ模型的彤为99.34%,RMSECV为1.21g·L^-1;进一步对模型进行验证和评价,结果表明阶段Ⅰ模型验证集的RMSEP为4.07g·L^-1;阶段Ⅱ模型验证集的RMSEP为1.13g·L^-1本研究结果表明利用近红外光谱法建立的模型具有良好的预测效果,能满足苹果酒工业生产中检测、监测精度要求。 The sugar content and the matrix always are being changed during cider-making fermentation. In order to measure and monitor sugar content accurately and rapidly, it is necessary for the spectra to be sorted. Calibration models were established at different fermentation stages based on near infrared spectroscopy with artificial neural network. NIR spectral data were collected in the spectral region of 12 000-4 000 cm^-1 for the next analysis. After the different conditions for modeling sugar content were analyzed and discussed, the results indicated that the calibration models developed by the spectral data pretreatment of straight line subtraction(SLS) in the characteristic absorption spectra ranges of 7 502-6 472.1 cm^-1 at stage Ⅰ and 6 102-5 446. 2 cm^-1 at stage Ⅱ were the best for sugar content. The result of comparison of different data pretreatment methods for establishing calibration model showed that the correlation coefficients of the models (R2) for stage Ⅰ and Ⅱ were 98. 93% and 99.34% respectively, and "the root mean square errors of cross validation(RMSECV) for stage Ⅰ and Ⅱ were 4. 42 and 1.21 g · L^-1 respectively. Then the models were tested and the results showed that the root mean square error of prediction (RMSEP) was 4.07 g· L^-1 and 1.13 g · L^-1 respectively. These demonstrated that the models the authors established are very well and can be applied to quick determination and monitoring of sugar content during cider-making fermentation.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第3期652-655,共4页 Spectroscopy and Spectral Analysis
基金 国家食品安全关键技术重大项目(2006BAK02A24) 国家自然科学基金项目(20806062) 西北农林科技大学青年学术骨干支持计划项目资助
关键词 近红外光谱 苹果酒 糖度 人工神经网络 偏最小二乘法 Near infrared spectroscopy Cider Sugar content Artificial neural network Partial least square
  • 相关文献

参考文献13

  • 1Blaneo M, Villarroya I. Trends in Analytical Chemistry, 2002, 21(4): 240.
  • 2Jose LOis Moreira, Lucia Santos. Analytica Chimical Acta, 2004, 513: 263.
  • 3UrbancrCuadrado M, Luque de Castro M D, Perez-Juan P M, et al. Analytica Chimical Acta, 2004, 527: 81.
  • 4Cozzolino D, Kwiatkowski M J, Parker M, et al. Analytica Chimica Acta, 2004, 513: 73.
  • 5彭帮柱,龙明华,岳田利,袁亚宏.傅立叶变换近红外光谱法检测白酒总酸和总酯[J].农业工程学报,2006,22(12):216-219. 被引量:35
  • 6陈斌,王豪,林松,赵杰文.基于相关系数法与遗传算法的啤酒酒精度近红外光谱分析[J].农业工程学报,2005,21(7):99-102. 被引量:49
  • 7GUOXin-guang,MAPei-xuan,RENYi-ping(郭新光,马佩选,任一平).GB/T15038-2005.Analytical Methods of Wineand FruitWine(GB/T15038-2005葡萄酒、果酒适用分析方法).Beijing:Chinese Standards Press(北京:中国标准出版社),2005.
  • 8李代禧,吴智勇,徐端钧,徐元植.啤酒主要成分的近红外光谱法测定[J].分析化学,2004,32(8):1070-1073. 被引量:41
  • 9Fredric M Ham, Ivica Kostanic. Principles of Neurocomputing for Science and Engineering. Beijing: China Machine Press, 2003.
  • 10LUWan-zhen,YUANHong-fu,XUGuang-tong,etal(陆婉珍,袁洪福,徐广通,等).Modem NearInfrared Spectroscopy Analysis Technique(现代近红外光谱分析技术).Beijing:Chinese Press of Petroleum Chemical Industry(北京:中国石油化工出版社),2000.

二级参考文献31

共引文献144

同被引文献140

引证文献12

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部