期刊文献+

具有偏差变元的p-Laplacian中立型Liénard方程的周期解 被引量:8

Periodic Solutions for p-Laplacian Neutral Liénard Equation with a Deviating Argument
在线阅读 下载PDF
导出
摘要 利用重合度理论中的延拓定理,给出了具有偏差变元的p-Laplacian中立型Liénard方程存在周期解的判别条件. By using Mahwin's continuation theorem in coincidence degree theory, some criteria to guarantee the existence of ω-periodic solutions for p-Laplacian neutral Liénard equation with a deviating argument are derived.
作者 彭世国
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第5期617-626,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.60572073)资助的项目.
关键词 周期解 中立型Liénard方程 偏差变元 P-LAPLACIAN 重合度 Periodic solutions, Neutral Liénard equation, Deviating argument p-Laplacian, Coincidence degree
  • 相关文献

参考文献14

  • 1Lu S. P. and Ge W. G., Periodic solutions for a kind of Lienard equation with a deviating argument [J], J. Math. Anal. Appl., 2004, 289:231-243.
  • 2Wang G. Q., A priori bounds for periodic solutions of a delay Rayleigh equation [J], Applied Math. Letters, 1999, 12:41-44.
  • 3Lu S. P., Ge W. G. and Zheng Z. X., Periodic solutions for a kind of Rayleigh equation with a deviating argument [J], Applied Math. Letters, 2004, 17:443-449.
  • 4鲁世平,葛渭高,郑祖庥.具偏差变元的Rayleigh方程周期解问题[J].数学学报(中文版),2004,47(2):299-304. 被引量:35
  • 5Lu S. P. and Ge W. G., Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument [J], Nonlinear Analysis, 2004, 56:501 514.
  • 6Cheung W. S. and Ren J. L., Periodic solutions for p-Laplacian Lienard equation with a deviating argument [J], Nonlinear Analysis, 2004, 59:107-120.
  • 7Cheung W. S. and Ren J. L., On the existence of periodic solutions for p-Laplacian generalized Lienard equation [J], Nonlinear Analysis, 2005, 60:65-75.
  • 8Lu S. P. and Ge W. G., Existence of periodic solutions for a kind of second-order neutral functional differential equation [J], Applied Mathematics and Computation, 2004, 157:433-448.
  • 9Zhu Y. L. and Lu S. P., Periodic solutions for p-Laplacian neutral functional differential equation with deviating arguments [J], J. Math. Anal. Appl., 2007, 325:377-385.
  • 10Gaines R. E. and Mawhin J. L., Coincidence Degree and Nonlinear Differential Equations [M], New York: Springer-Verlag, 1977.

二级参考文献8

  • 1Gaines R. E., Mawhin J. L., Coincidence degree and nonlinear differential equations, Berlin: Springer-Verlag,1977.
  • 2Liu F., Existence of periodic solutions to a class of second order nonlinear differential equations, Acta Math.Sinica, 1990, 33(2): 260-269 (in Chinese).
  • 3Liu F., On the existence of periodic solutions of Rayleigh equation, Aeta Math. Sinica, 1994, 87(5): 639-644(in Chinese).
  • 4Huang X. K, Xiang Z. G., On the existence of 2π-periodic solution for delay Duffing equation x"(t)+g(x(t-τ))=p(t), Chinese Science Bulletin, 1994, 39(3): 201-203 (in Chinese).
  • 5Ma S. W., Wang Z. C., Yu J. S., Coincidence degree and periodic solutions of Dufling equations, Nonlinear Analysis, TMA, 1998, 84: 443-460.
  • 6Lu S. P., Ge W. G., On the existence of periodic solutions of second order differential equations with deviating arguments, Acta. Math. Sinica, 2002, 45(4): 811-818 (in Chinese).
  • 7Lu S. P., Ge W. G., Periodic solutions for a kind of second order differential equations with multiple deviating arguments, Applied Mathematics and Computation, 2003, 146(1): 195-209.
  • 8Wang G. Q., A priori bounds for periodic solutions of a delay Rayleigh equation, Applied Mathematics Letters,1999, 12: 41-44.

共引文献34

同被引文献31

  • 1鲁世平,葛渭高.多偏差变元中立型Rayleigh方程周期解问题[J].数学物理学报(A辑),2006,26(6):879-888. 被引量:10
  • 2Zhu Yanling,Lu Shiping.PERIODIC SOLUTION FOR p-LAPLACIAN DIFFERENTIAL EQUATION WITH A DEVIATING ARGUMENT[J].Annals of Differential Equations,2007,23(1):119-126. 被引量:5
  • 3PENG Shi-guo,ZHU Si-ning. Periodic solutions for p-Laplacian Rayleigh equalions with a deviating argument[ J ]. Nonlinear A- nalysis ,2007,67 : 13S - 146.
  • 4LU Shi-ping. Existence of periodic solutions to p-Laplac!an equation with a deviating argument [ J ]. Nonlinear Analysis,2008, 68 : 1453 - 1461.
  • 5CHEUNG Wing-sum, REN Jing-li. Periodic solutions for p-Laplacian Rayleigh equations [ J ]. Nonlinear Analysis, 2006,65 : 2003 - 2012.
  • 6LU Shi-ping, GE Wei-gao,ZHENG Zu-xiu. Periodic solutiolls to lieuiral differential equalion with deviating arguments[ J ]. Ap- pl. Math. Comput ,2004,152 : 17 - 27.
  • 7HALE J K. Theory of Functional Differential Equations [ M ]. New York:Springer-Verlag, 1997.
  • 8GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equation[ M ] New York :Springer-Verlag. 1997.
  • 9Wing-Sum Cheung, Jingli Ren. Periodic solutions for p- Laplacian Lienard equation with a deviating argument[J].Nonlinear Analysis,2004, 59:107-120.
  • 10Wing-Sum Cheung, Jingli Ren. On the existence of Periodic solutions for p- Laplacian generalized Lienard equation[J]. Nonlinear Analysis, 2005,60 : 65- 75.

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部