期刊文献+

一类二阶中立型泛函微分方程周期解的存在性

On the Existence of periodic Solutions for a Kind of Second-order Neutral Functional Differential Equation
在线阅读 下载PDF
导出
摘要 利用重合度理论和更精确的先验估计,讨论了一类二阶中立型泛函微分方程周期解的存在性问题;在更弱的条件下获得该方程周期解存在性的若干新结果,推广和改进了已有文献中的相关结论。 By means of better prior estimate and the coincidence degree theory, the existence of periodic solutions for a kind of second-order neutral functional differential equation is studied. Some new sufficient condition of periodic solutions is obtained on the even more conditions. The results have extend and improved the related reports in the literatures.
作者 秦发金
出处 《科学技术与工程》 2007年第11期2467-2471,共5页 Science Technology and Engineering
关键词 二阶中立型泛函微分方程 周期解 存在性 重合度理论 second-order Neutral functional differential equation periodic solution existence coincidence degree theory
  • 相关文献

参考文献8

二级参考文献36

  • 1葛渭高.多滞量时滞微分方程周期解的存在性[J].应用数学学报,1994,17(2):173-181. 被引量:11
  • 2黄先开.具有时滞的保守系统的2π周期解[J].系统科学与数学,1989,9(4):298-308. 被引量:17
  • 3曹进德,代正德.一类二阶中立型方程的周期解[J].纯粹数学与应用数学,1995,11(A01):102-106. 被引量:6
  • 4司建国.关于高阶常系数线性中立型方程周期解的讨论[J].应用数学和力学,1996,17(1):29-37. 被引量:20
  • 5Gaines R. E., Mawhin J. L., Coincidence degree and nonlinear differential equations, Berlin: Springer-Verlag,1977.
  • 6Liu F., Existence of periodic solutions to a class of second order nonlinear differential equations, Acta Math.Sinica, 1990, 33(2): 260-269 (in Chinese).
  • 7Liu F., On the existence of periodic solutions of Rayleigh equation, Aeta Math. Sinica, 1994, 87(5): 639-644(in Chinese).
  • 8Huang X. K, Xiang Z. G., On the existence of 2π-periodic solution for delay Duffing equation x"(t)+g(x(t-τ))=p(t), Chinese Science Bulletin, 1994, 39(3): 201-203 (in Chinese).
  • 9Ma S. W., Wang Z. C., Yu J. S., Coincidence degree and periodic solutions of Dufling equations, Nonlinear Analysis, TMA, 1998, 84: 443-460.
  • 10Lu S. P., Ge W. G., On the existence of periodic solutions of second order differential equations with deviating arguments, Acta. Math. Sinica, 2002, 45(4): 811-818 (in Chinese).

共引文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部