摘要
建立了滚动轴承支承下的转子系统的不平衡-碰摩耦合故障动力学模型。在滚动轴承模型中,充分考虑了滚动轴承间隙、滚动轴承的滚珠与滚道的非线性赫兹接触力以及由滚动轴承支撑刚度变化而产生的VC(Varying com-pliance)振动,在转子系统中,考虑了不平衡和转静碰摩耦合故障。运用数值积分方法获取了系统的非线性动力响应,分析了转子旋转速度、滚动轴承间隙、碰摩刚度、转子偏心量对系统动力响应的影响,研究了系统分叉与混沌特征分析,发现了通往混沌的倍周期分叉和阵发性分叉途径。
A dynamic model of a rotor-ball bearing system with unbalance-rubbing coupling fault is established.For ball bearing,three nonlinear factors are considered,such as,bearing clearance,Hertzian contact force between balls and races and varying compliance vibration due to periodical change of contact position between balls and races.In the rotor,an unbalance-rubbing coupling fault is considered.The numerical integral method is used to obtain nonlinear dynamic responses of the system.Effects of rotating speed,bearing clearance,rubbing stiffness and rotor eccentricity on the response are analyzed,the bifurcation and chaos motion of the system are studied,and period-doubling and intermittent bifurcations to chaos are observed.
出处
《振动与冲击》
EI
CSCD
北大核心
2008年第4期43-48,共6页
Journal of Vibration and Shock
关键词
转子动力学
滚动轴承
不平衡
碰摩
混沌
分叉
rotor dynamics
ball bearing
mass-unbalance
rubbing
chaos
bifurcation