期刊文献+

锌电解整流供电系统的微粒群优化控制策略 被引量:7

Optimal control of direct power supply system in zinc electrolytic process based on PSO
在线阅读 下载PDF
导出
摘要 在分析锌电解整流供电系统的基础上,建立基于整流效率和整流系统稳流精度的整流供电系统优化控制数学模型,并根据整流供电系统的分级递阶控制特性,提出一种递阶多目标微粒群算法,用于整流供电系统各机组电流分配的优化决策.实验结果和现场运行结果都表明,基于多目标微粒群算法的整流供电系统优化控制策略能够有效提高整流效率和稳流精度. Based on the analysis of the zinc electrolysis direct current power supply system, a model for optimal control of the direct current power supply system is obtained. Based on the hierarchy control characteristic of the direct current power supply system, a hierarchy multi-objective particle swarm optimization (HMPSO) is developed to optimize the control of the system. The result of experiment and field running show that the optimal control strategies based on hierarchy multi-objective particle swarm optimization can availably improve the precision of output current and the commuting efficiency.
出处 《控制与决策》 EI CSCD 北大核心 2008年第2期145-150,共6页 Control and Decision
基金 国家自然科学基金项目(60673119) 湖南省教育厅科研项目(07B019)
关键词 锌电解 整流供电 多目标微粒群算法 递阶编码 Electrolytic zinc process Direct power supply Multi-objective PSO Hierarchy coding
  • 相关文献

参考文献11

  • 1Yang Chunhua, Gui Weihua, Ye Wenwu Information Engineering Institute, Central South University of Technology, Changsha 410083.EXPERT OPTIMIZED CONTROL TECHNIQUE FOR ELECTROLYTIC DEPOSITION PROCESS OF HYDROMETALLURGY OF ZINC[J].中国有色金属学会会刊:英文版,1997,7(4):134-138. 被引量:5
  • 2刘忏斌,冯公伟,等.硅整流所电力设计[M].北京:冶金工业出版社,1983.
  • 3桂卫华,王雅琳,阳春华,黄泰松.基于模拟退火算法的锌电解过程分时供电优化调度[J].控制理论与应用,2001,18(1):127-130. 被引量:8
  • 4黄海悦,申群泰.神经网络专家系统在整流直流电力经济运行中的应用[J].控制与决策,2001,16(6):940-942. 被引量:1
  • 5Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolution algorithms: Empirical results [J]. Evolutionary Computation, 2000, 8(2):173-195.
  • 6Ray T, Liew K M. A swarm metaphor for multiobjective design optimization [J]. Engineering Optimization, 2002, 34(2):151-153.
  • 7Coello C A, Puludo G T, Lechuga M S. Handling mutiobjectives with particle swarm optimization [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3) : 256-279.
  • 8Hu X, Eberhart R C. Multiobjective optimization using dynamic neighborhood particle swarm optimization[C]. Proc of the IEEE Congress on Evolutionary Computation. Hawaii, 2002: 1677-1681.
  • 9Carlo R R, Prospero C N. An effective use of crowding distance in multi-objective particle swarm optimization [C]. Proc of the Genetic and Evolutionary Computation Conference. Washington, 2005: 257-264.
  • 10Hwang S K, Koo K, Lee j S. Homogenous particle swarm optimizer for multi-objective optimization problem[C]. Proc of the first ICGST International Conference on Artificial Intelligence and Machine Learning. Cairo, 2005: 141-147.

二级参考文献15

  • 1Yang Chunhua,Trans Nonferr Metal Soc China,1997年,7卷,4期,133页
  • 2Yang Ruoli,系统工程理论与实践,1997年,17卷,5期,29页
  • 3Gibson G. J, Siu S, Cowan C. F. N . The Application of Nonlinear Structures to Reconstruction of Binary Signals[J]. IEEE Trans. On SP, 1991,39(8) : 1877 - 1885.
  • 4Gibson G. J, Siu S, Cowan C. F. N. Application of Muhilayer perceptrons as Adative Equalizers [ C ]. Proc. Of IEEE Int Conf on ASSP. , 1989 : 1183.
  • 5Chen S, Gibson G. J, Cowan C. F. N, etal. Reconstruction of Binary Signals Using an Adaptive Radial Basis Function Equalizer[ J ]. EURASIP Signal Processing, 1991,22 ( 1 ) :77 - 93.
  • 6Chen S, Mclaughlin, Mulgrew B. Complex-valued Radial Basis Function Network, Part I:Network Architecture and Learning Mgorithm [ J ]. EURASIP Signal Processing ,1994,35 ( 1 ) : 19 - 31.
  • 7Chen S, Mclaughlin, Mulgrew B. Complex-valued Radial Basis Function Network, Part Ⅱ: Application to Digital Communication Charmal Equalization [ J ]. EURASIP Signal Processing, 1994,36(2) : 175 - 188.
  • 8Cha I, Kassam S. A. Charmal Equalization Using Adaptive Complex Radial Basis Function Networks [ J ]. IEEE J. on SAC,1995,13(1) :121 - 131.
  • 9Man K. F. ,Tang K. S. ,Kwong S. ,etal. Genetic Mgorithm for Control and Signal Processing[ M]. London :Spring-verlag, 1998.
  • 10Nauck D. Adaptive Rule Weight in Neuro-Fuzzy System[ J ]. Neural Computing & Application, 2000, 9 ( 1 ) :60 -71.

共引文献28

同被引文献198

引证文献7

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部