期刊文献+

一种优化模糊神经网络的多目标微粒群算法 被引量:9

Fuzzy Neural Network Optimization by a Multi-Objective Particle Swarm Optimization Algorithm
在线阅读 下载PDF
导出
摘要 模糊神经网络优化是一个多目标优化问题·通过对模糊神经网络和微粒群算法的深入分析,提出了一种多目标微粒群算法·在算法中将网络的精确性和复杂性分别作为目标进行优化,再用一种启发性分量加权均值法来选取个体极值和全局极值·算法能够引导粒子较快地向非劣最优解区域移动并最终获得多个非劣最优解,为模糊神经网络的精确性和复杂性的折中寻优问题提供了一种解决方法·茶味觉信号识别的仿真实验验证了该算法的有效性· Designing a set of fuzzy neural networks can be considered as solving a multi-objective optimization problem. In the problem, performance and complexity are two conflicting criteria. An algorithm for solving the multi objective optimization problem is presented based on particle swarm optimization through the improvement of the selection manner for global and individual extremum. The search for the Pareto optimal set of fuzzy neural networks optimization problems is performed, and a tradeoff between accuracy and complexity of fuzzy neural networks is clearly shown by obtaining nondominated solutions. Numerical simulations for taste identification of tea show the effectiveness of the proposed algorithm.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第12期2104-2109,共6页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目(60433020) 国家"九八五"工程"计算与软件科学科技创新平台"基金项目 教育部"符号计算与知识工程"重点实验室基金项目(02090)~~
关键词 模糊神经网络 微粒群算法 多目标优化 fuzzy neural network particle swarm optimization multi-objective optimization
  • 相关文献

参考文献14

  • 1L Tran Haoi,S Osowski.Neuro-fuzzy TSK network for approximation of static and dynamic functions[J].Control and Cybernetics,2002,31(2):309-326
  • 2彭志平.一种基于NFCS形态的模糊神经网络的学习算法[J].计算机研究与发展,2002,39(11):1436-1441. 被引量:4
  • 3U D Hanebeck,G K Schmidt.Genetic optimization of fuzzy networks[J].Fuzzy Sets and Systems,1996,79(1):59-68
  • 4I F Chung,C J Lin,C T Lin.A GA-based fuzzy adaptive learning control network[J].Fuzzy Sets and Systems,2000,112(1):65-84
  • 5H Ishibuchi,T Nakashima,T Murata.Multi-objective optimization in linguistic rule extraction from numerical data[C].In:Proc of the 1st Int'l Conf on Evolutionary Multi-Criterion Optimization.Berlin:Springer,2001.588-602
  • 6H Ishibuchi,T Yamamoto.Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining[J].Fuzzy Sets and Systems,2004,141(1):59-88
  • 7C A Coello.A comprehensive survey of evolutionary-based multi objective optimization techniques[J].Knowledge and Information Systems,1999,1(3):269-308
  • 8R C Eberhart,J Kennedy.A new optimizer using particle swarm theory[C].The 6th Int'l Symp on Micro Machine and Human Science,Nagoya,1995
  • 9J Kennedy,R C Eberhart.Particle swarm optimization[C].In:Proc of the IEEE Int'l Conf on Neural Networks.Piscataway,NJ:IEEE Service Center,1995.1942-1948
  • 10R C Eberhart,X Hu.Human tremor analysis using particle swarm optimization[C].Congress on Evolutionary Computation 1999,Washington,DC,1999

二级参考文献17

  • 1Kochi, India. Ninan Sajeeth Philip, K Babu Joseph. Boosting the differences: A fast Bayesian classifier neural network. Intelligent Data Analysis, Netherlands: IOS Press, 2000. 463-473.
  • 2Matthew A Kupinski, Darrin C Edwards, Maryellen L Giger, et al.Ideal observer approximation using Bayesian classification neural networks. IEEE Trans. on Medical Imaging, 2001, 20(9) : 886--899.
  • 3Jakob Vesterstrom, Jacques Riget. Particle swarms-extensions for improved local, multi-modal, and dynamic search in numerical optimization: [ Master dissertation ] . Aarhus C., Denmark:Department of Computer Science, Ny Munkegade, Bldg, 540,University of Aarhus DK-800, 2002.
  • 4M. Settles, B. Rylander. Neural network learning using particle swarm optimizers. Advances in Information Science and Soft Computing. Athens, Greece: WSEAS Press, 2002. 224--226.
  • 5Shunichiro Watanabe, Akira Yokoyama, Zhang Wenyi, et al.Detection mechanism of taste signals with commercial ion sensors.Journal of the Institute of Electrical Engineers of Japan (in Japanese), 1998, CS-98-30: 13- 18.
  • 6Ander Hoist. The use of a Bayesian neural network model for classification tasks: [Ph. D. di~ertation]. Stockholm, Sweden:Department of Numerical Analysis and Computing Science, Royal Institute of Technology, 1997.
  • 7J Kennedy, R C Eberhart. Particle swarm optimization. The IEEE lnt'l Conf. on Neural Networks, Piscataway, NJ. 1995.
  • 8王士同.神经模糊系统及其应用.北京:北京航空航天大学出版社,1999(Wang Shitong. Neuro Fuzzy System and Its Applications (in Chinese). Beijing: Press of Beijing University of Aeronautic and Astronautics, 1999)
  • 9A Kawamura, N Watanabe et al. A prototype of neuro-fuzzy cooperation system. In: IEEE Fuzzy'92. Washington: IEEE Press, 1993. 1275~1282
  • 10Ralf Salomon, J Leo van Hemmen. Accelerating back propagation through dynamic self-adaption. Neural Networks,1996, 9(4): 589~601

共引文献5

同被引文献178

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部