期刊文献+

基于神经网络技术在乳腺钼靶x片感兴趣区域的提取新方法 被引量:3

Region of Interest Extracting in Mammograph Based on Neural Network
在线阅读 下载PDF
导出
摘要 在乳腺钼靶X片计算机辅助诊断中,感兴趣区域也就是可疑病灶区的自动提取是乳腺图像处理中的重点和难点之一,本研究旨在提出一种准确、有效的算法,以提高乳腺癌早期诊断的效率和准确率。方法:首先对感兴趣区域的多种特征进行了分析,然后提出一种基于神经网络新训练算法的乳腺钼靶x片感兴趣区域的自动提取方法。结果:用我们的算法对山东省医学影像研究所提供的30个临床实际病例,60幅图像进行了检测和分析。实验结果验证了该算法的有效性和准确性。结论:该算法在保持较低的假阳性率的同时,能得到高的阳性检出率。 In mammography processing, the extraction of region of interest is one of the most difficult problem. this paper presents a new efficiency method for diagnosing the early cases of breast cance. We firstly analyze many characteristics of region of interest, then, we suppose an automatic extracting method of region of interest in mammography based on neural network. We analyze 20 cases and 40 image from shandong Medical imaging research institute.experimental results demonstrate better extracting effect.The test results showed that the method could achieve a relative high true positive rate(TPR)with a lower false positive.
出处 《中国医学装备》 2008年第2期27-31,共5页 China Medical Equipment
基金 山东省教育厅科技基金资助(NO.J06G64)
关键词 感兴趣区域 神经网络 乳腺钼靶X片 region of interest, neural network, mammograph
  • 相关文献

参考文献7

  • 1[1]J San-Kan Lee,Chien-Shun Lo,Chuin-Mu Wang.A computer-aided design mammography screening system for detection and classification of microcalcifications[J].International Journal of Medical Informatics,2000,60:29-57.
  • 2[2]Ryohei Nakayama,Yoshikazu Uchiyama,Koji Yamamoto,et al.Computer-aided diagnosis scheme using a filter bank for detection of microcalcification clusters in mammograms[J].IEEE Transactions on Biomedical Engineering,2006,53(2):273-283.
  • 3[3]A.Papadopoulos,D.I.Fotiadis,A.Likas.An automatic microcalcification detection system based on hybrid neural network classifier[J].Artificial Intelligence in Medicine,2002,25:149-167.
  • 4张光玉,龚光珍,朱维乐.基于克隆算法的彩色图像边缘检测新算法[J].电子学报,2006,34(4):702-707. 被引量:20
  • 5边肇祺 张学工.模式识别[M].北京:清华大学出版社,2002.296-304.
  • 6[9]Yu S,Guan L.A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films[J].IEEE Transactions on Medical Imaging,2000,19(2):115-126.
  • 7[10]Papadopoulos A,Fotiadis DI,Likas A.An automatic microcalcification detection system based on hybrid neural network classifier.Artificial Intelligence in Medicine,2002,25.

二级参考文献8

  • 1李洁,高新波,焦李成.基于克隆算法的网络结构聚类新算法[J].电子学报,2004,32(7):1195-1199. 被引量:24
  • 2Jianping F, David K Y Y. Automatic image segmentation by integrating color-edge extraction and seeded region growing[ J ]. Image Processing, IEEE Trans, 2001,10(10) :1454-1466.
  • 3Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6):679 - 698.
  • 4Wang Xiao-peng, Luo Jin-wen. Edge detection based on regulated morphological gradient [ A ]. Proceedings of ICCEA04[C]. ICCEA ,2004. 419 -422.
  • 5S Mallat, S Zhong. Characterization of signals from multiscale edges [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992,14 ( 7 ) : 710 - 732.
  • 6Hanmandlu M, See J, Vasikarla S. Fuzzy edge detector using entropy optimization[ A ]. Proceedings of ITCC04[C]. ITCC ,2004.665 -670.
  • 7Gang L, Haralick R M. Two practical issues in canny's edge detector implementation [ A ]. Proceedings of ICPR00 [ C ]. ICPR,2000. 676 - 678.
  • 8张文华,朱红英,黄祥辉.克隆和动物克隆[J].动物学杂志,1999,34(3):48-51. 被引量:6

共引文献44

同被引文献26

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部