期刊文献+

基于支持向量机的重要抽样方法 被引量:2

Importance Sampling Method Based on SVM
在线阅读 下载PDF
导出
摘要 在结构可靠度分析中,对于非线性的隐式极限状态方程,与一次二阶矩方法相结合的传统响应面方法一般并不适用。支持向量机算法较好地解决了小样本的统计学习问题,为解决有限样本情况下结构极限状态功能函数的重构提供了有力的理论基础。基于回归支持向量机方法,采用有限的经验点重构结构极限状态方程,结合重要抽样方法计算非线性的隐式极限状态方程结构的可靠度。该方法相对传统响应面方法在结构计算工作不增加的条件下,可以获得高精度的解,能较有效地解决非线性的隐式极限状态方程的结构可靠分析问题。 The traditional response surface method in combination with first order second moment (FORM) approach isn't suitable for reliability analysis of structure with a non-linear implicit limit state equation. The support vector machine (SVM) method can deal with the problem of statistical learning of small samples, which provides a very good basic theory for the reconstruction of the limit state function. The structural reliability analysis is done with the importance sampling method by using SVM method and limited experimental samples to reconstruct the limit state performance function. In comparison with the traditional response surface method, the proposed approach in this paper can achieve a more accurate result without increasing the amount of structural calculation works and can deal with the problem of reliability analysis of structure with a non-linear implicit limit state equation effectively.
出处 《长江科学院院报》 CSCD 北大核心 2007年第6期62-65,共4页 Journal of Changjiang River Scientific Research Institute
基金 国家自然科学基金重点项目(50539030-3-1) 国家支撑计划专题(2006BAC14B03)
关键词 支持向量机 重要抽样 结构可靠度分析 support vector machine importance sampling method structural reliability analysis
  • 相关文献

参考文献7

  • 1RAJASHEKHAR M R, ELLINGWOOD B. A New Look at the Response Surface Approach for Reliability Analysis [J]. Structural Safety, 1993, (12) : 205 - 220.
  • 2VAPNIK V. The Nature of Statistical Learning Theory [M]. New York: Springer, 1995.
  • 3ROCO C M, MORENO J. Fast Monte Carlo Reliability Evaluation Using Support Vector Machine[J]. Reliability Engineering and System Safety, 2002,76(3): 237 - 243.
  • 4陆有忠,杨有贞,张会林.边坡工程可靠性的支持向量机估计[J].岩石力学与工程学报,2005,24(1):149-153. 被引量:24
  • 5PLATT J C. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines [EB/ OL] (1998 - 04 - 21) [2006 - 05 - 10]. hTTP: // www. research.microsoft. com/jplatt/smo, html.
  • 6FLAKE G W, LAWRENCE S. Efficient SVM Regression Training with SMO[J]. Machine Learning, 2002, 46,271 - 290.
  • 7Jin Weiliang Professor, Department of Civil Engineering, Zhe Jiang University, Hangzhou 310027.Importance Sampling Method in V-Space[J].China Ocean Engineering,1997,12(2):127-150. 被引量:4

二级参考文献44

  • 1Whitma n R V. Evaluation calculated risk in geomechanical engineering[J]. J. Geotech. Engrg.,ASCE,1984,110(8):145-188.
  • 2张兴. 边坡工程的可靠性分析[A]. 见:陈祥福编. 岩土力学进展[C]. 北京:中国展望出版社,1990. 31-40.(Zhang Xing. Reliability Analysis for Slope Engineering[A]. In:Chen Xiangfu ed. Progress on Geomechanics[C]. Beijing:China Publishing House of Prospect,1990. 31-40. (in Chinese))
  • 3Cho S E,Lee S R. Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(9):756-763.
  • 4Pradeep U K,Nitin K D. Neural networks for profiling stress history of clays from PCPT data[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128(7):569-579.
  • 5Vapnic V N. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag,1995. 126-178.
  • 6Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery,1998,2(2):124-164.
  • 7Shevade S K. Improvements to the SMO algorithm for SVM regression[J]. IEEE,Transactions on Neural Networks,2000,11(5):1 188-1 193.
  • 8Sah N K,Sheorey P R,Upadhyaya L N. Maximum likelihood estimation of stability[J]. Int. J. Rock Mech. Sci. & Geomech. Abs.,1994,31(1):47-50.
  • 9Ayyub, B. M,Chia, C. Y.Generalized conditional expectation for structural reliability assessment. Structural Safety . 1992
  • 10Bjerager,P.On computation methods for structural reliability analysis. Structural Safety . 1990

共引文献26

同被引文献11

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部