期刊文献+

基于SVM的灵敏度分析方法选取肿瘤特征基因 被引量:4

Analysis of Gene Sensitivity for Tumor Informative Genes Selection Based on SVM
在线阅读 下载PDF
导出
摘要 提出基于支持向量机的灵敏度分析方法选取结肠癌特征基因.用支持向量机分析基因对分类决策函数的灵敏度,递归去除灵敏度较低的若干基因,得到一组候选特征基因子集;以支持向量机为分类工具,检验候选特征基因子集对样本分类的贡献,选取具有最佳分类能力的候选特征基因子集作为结肠癌特征基因子集.通过实验比较,该特征基因子集的分类能力优于文献给出的其他特征基因子集,表明了该方法的可行性和有效性. In this paper we proposed an approach for tumor informative genes selection by analysis of gene sensitivity based on SVM. We analyzed the gene expression profiles of colon and recursively eliminated the genes which have lower sensitivity to SVM , then a set of candidate nested feature subsets were generated. Support Vector Machines were employed to classify the samples using these candidate feature subsets, and the feature subset with a minimum error was chosen as a set of colon informative genes. The results show that this feature subset contains more tumor classification information than other feature subsets identified in the literatures. The method proposed in this paper is feasible and effective
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2007年第9期954-958,共5页 Journal of Beijing University of Technology
基金 国家自然科学基金重点资助项目(60234020) 安徽省教育厅科研项目(KJ2007B001).
关键词 特征选取 支持向量机 基因表达谱 灵敏度 feature selection support vector machine gene expression profile sensitivity
  • 相关文献

参考文献12

  • 1RAMASWAMY S, GOLUB T R. DNA microarrays in clinical oncology [J]. Journal of Clinical Oncology, 2002, 20(7): 1932-1941.
  • 2LANDER E S, WEINBERG R A. GENOMICS.- Journey to the center of biology[J]. Scince, 2000, 287: 1777-1782.
  • 3LANDER E S. Array of hope[J]. Nature Genetics, 1999, 21(supp): 3-4.
  • 4李泽,包雷,黄英武,孙之荣.基于基因表达谱的肿瘤分型和特征基因选取[J].生物物理学报,2002,18(4):413-417. 被引量:27
  • 5GOLUB R R, SLONIM D K, TAMAYO P, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring[J]. Science, 1999, 289: 531-537.
  • 6KHAN J, WEI J S, RINGNER M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural net works[J]. Nature Medicine, 2001, 7(6): 637-679.
  • 7AI.ON U, BARKAI N, NOTTERMAN D A, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J]. Proc Natl Acad Sci Usa, 1999, 96: 6745-6750.
  • 8ZHANG H, YU C Y, SINGER B, et al. Recursive partioning for tumor classification with gene expression microarray data [J]. Proe Natl Aead Sci Usa, 2001, 98: 6730-6735.
  • 9李霞,饶绍奇,张田文,郭政,张庆普,K.L.Moser,E.J.Topol.应用DNA芯片数据挖掘复杂疾病相关基因的集成决策方法[J].中国科学(C辑),2004,34(2):195-202. 被引量:16
  • 10GUYON I, WESTON J, BARNHII.I. S, et al. Gene selection for cancer classification using support vector machines[J ]. Machine Learning, 2000, 46(13) : 389-242.

二级参考文献44

  • 1Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring[J]. Science, 1999,286:531-537.
  • 2Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J]. Nature, 2000,403:503-511.
  • 3Cheeseman P, Stutz J. Advances in knowledge discovery and data mining[J]. Bayesian classification(Autoclass): theory and results, 1996.153-180. AAAI Press/MIT Press, Cambridge,MA.
  • 4Wallace CS, Dowe DL. MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions[J]. Statistics and Computing, 2000,10:73-83.
  • 5Eisen MB, Spellman PT, Brown P, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proc Natl Acad Sci USA, 1998,95:14863-14868.
  • 6Stamatopoulos K, Kosmas C, Belessi C, et al. Molecular insights into the immunopathogenesis of follicular lymphoma[J]. Immunol Today, 2000,21:298-305.
  • 7Staudt LM, Dent AL, Shaffer AL, et al. Regulation of lymphocyte cell fate decisions and lymphomagenesis by BCL-6[J]. Int Rev Immunol, 1999,18:381-403.
  • 8DeRisi, J L, Iyer, V R, Brown, P O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science,1997, 278:680-686
  • 9Golub, T R, Slonim, D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286:531-537
  • 10Ambroise, C, McLachlan, G J. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA, 2002, 99:6562-6566

共引文献83

同被引文献43

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部