期刊文献+

基于支持向量机递归特征消除和特征聚类的致癌基因选择方法 被引量:4

Cancer Gene Selection Algorithm Based on Support Vector Machine Recursive Feature Elimination and Feature Clustering
在线阅读 下载PDF
导出
摘要 癌症通常由基因发生突变引起,因此从大量基因中有效地识别出少量致癌基因具有重要意义.针对基因表达谱数据高维小样本的特点,将支持向量机递归特征消除(SVM-RFE)和特征聚类算法相结合,提出一种新的基因选择方法:K类别SVM-RFE(K-SVM-RFE).该算法通过特征排序算法去除大量无关基因,利用K均值聚类算法将相似基因聚为一类,并通过两次SVM-RFE算法精选致癌基因.随后将K-SVM-RFE算法应用于多个基因表达谱数据集,并对其中的关键参数设置进行了讨论.实验结果表明K-SVM-RFE算法所选基因较已有方法在分类准确率上有显著提高,特别是在选择少量致癌基因上效果提升更为明显. Cancer is usually caused by mutations in genes.It is significant to effectively identify a small number of pathogenic genes from numerous genes.Based on characteristics of gene expression profile data,a novel algorithm(K-SVM-RFE)of gene selection is proposed by combining SVM-RFE with feature clustering algorithm.First,irrelevant genes were removed by feature ranking algorithm.Then,these genes were clustered by K-means and the SVM-RFE algorithm was applied twice to select key genes.We conducted experiments on some real-world data sets and discussed the parameter settings in our method.Results show that,compared with the existing methods,genes selected by the K-SVM-RFE algorithm have significantly improved the classification accuracy,especially in selecting a few key genes.
作者 叶小泉 吴云峰 YE Xiaoquan;WU Yunfeng(Fujian Key Laboratory of Sensing and Computing for Smart City,School of Information Science and Engineering,Xiamen University,Xiamen361005,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期702-707,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(61771331)
关键词 基因表达谱 特征选择 K均值聚类 支持向量机 gene expression profile feature selection K-means support vector machine
  • 相关文献

参考文献2

二级参考文献23

  • 1李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 2刘全金,李颖新,阮晓钢.基于基因表达谱的结肠癌特征基因选取[J].昆明理工大学学报(理工版),2006,31(1):89-92. 被引量:4
  • 3GUYON I,WESTON J,BARNILL S,et al.Gene selection for cancer classification using support vector machine [J].Machine Learning, 2000,46(13):389-242.
  • 4Xiaosheng Wang and Osamu Gotoh.Microarray-Based Cancer Prediction Using Soft Computing Approach[J].Cancer Informatics,2009(7): 123-139.
  • 5Xue Wu Zhang,Yee Leng Yap,Dong Wei,et al.Molecular diagnosis of human cancer type by gene expression profiles and independent component analysis[J].European Journal of Human Genetics,2005(9).
  • 6Lander E.S..Array of hope.Nature Genetics,1999,21(Supplement 1):3~4.
  • 7Ramaswamy S.,Golub T.R..DNA microarrays in clinical oncology.Journal of Clinical Oncology,2002,20 (7):1932 ~1941.
  • 8Ramaswamy S.,Tamayo P.,Rifkin R.et al..Multiclass cancer diagnosis using tumor gene expression signatures.Proceedings of the National Academy of Sciences of the United States of America,2001,98(26):15149~15154.
  • 9Golub T.R.,Slonim D.K.,Tamayo P.et al..Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring.Science,1999,(5439):531~537.
  • 10Hedenfalk I.,Duggan D.,Chen Y.et al..Gene-expression profiles in hereditary breast cancer.New England Journal of Medicine,2001,344(8):529~548.

共引文献44

同被引文献37

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部