期刊文献+

一种新的图像语义自动标注与检索算法 被引量:6

New Method to Automatically Annotate and Retrieve Images
在线阅读 下载PDF
导出
摘要 提出了一种新的利用图像语义词汇表进行图像自动标注与检索的方法。采用混合层次模型在已标注好的训练图像集上计算图像区域类与关键字的联合概率分布,并用生成的模型标注未曾观察过的测试图像集,或用来进行基于语义的图像检索。实验结果表明,该方法在标注、检索精度和效率方面均优于当前其他方法。 This paper presented a new method to automatically annotate and retrieve images using a vocabulary of image semantics. This method was based on a mixture hierarchy model, and computed a joint probability distribution for image regions classes and keywords. Then it annotated unseen test images by used model. The experiments results show that the proposed method has advantages not only in terms of annotation and retrieval accuracy, but also in terms of efficiency.
作者 朱文球 刘强
出处 《计算机应用研究》 CSCD 北大核心 2007年第7期318-320,共3页 Application Research of Computers
基金 湖南省自然科学基金资助项目(05JJ40101)
关键词 图像检索 语义图像检索 图像语义 图像自动标注 image retrieval semantic image retrieval image semantic automatic image annotation
  • 相关文献

参考文献12

  • 1RUI Y,HUANG T S,CHANG S F.Image retrieval,current techniques,promising directions,and open issues[J].Journal of Visual Communication and Image Representation,1999,10(1):39-62.
  • 2COLOMBO C,BIMBO A D,PALA P.Semantics in visual information retrieval[J].IEEE Multimedia,1999,6(3):38-53.
  • 3FLICKNER M,SAWHNEY H,NIBLACK W.Query by image and vi-deo content:the QBic system[J].IEEE Computer,1995,28(9):23-32.
  • 4LUO J,SAVAKIS A.Indoor vs outdoor classification of consumer photographs using low-level and semantic features[C]//Proc of International Conference on Image Processing.Thessaloniki,Greece:[s.n.],2001:745-748.
  • 5BARNARD K,DUYGULU P,De FREITAS N,et al.Matching words and pictures[J].Machine Learning Research,2003,1(3):1107-1135.
  • 6BRUZZONE L,PRIETO D F.Unsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):456-460.
  • 7DUYGULU P,BARNARD K,de FREITAS N,et al.Object recognition as machine translation:learning a lexicon for a fixed image vocabulary[C]//Proc of the 7th European Conf Computer Vision.[S.l.]:[s.n.],2002:97-112.
  • 8CARSON C,BELONGIE S,GREENSPAN H,et al.Blobworld:image segmentation using expectation-maximization and its application to image querying[J].IEEE Trans Pattern Analysis and Machine Intelligence,2002,24(8):1026-1038.
  • 9万华林,Morshed U.Chowdhury.基于支持向量机的图像语义分类(英文)[J].软件学报,2003,14(11):1891-1899. 被引量:34
  • 10向日华,王润生.一种基于高斯混合模型的距离图像分割算法[J].软件学报,2003,14(7):1250-1257. 被引量:54

二级参考文献27

  • 1Jiang XY, Bunke H. Edge detection in range images based on scan line approximation. Computer Vision and Image Understanding,1999,73(2): 183~ 199.
  • 2Hoover A, Jean-Baptiste G, Jiang XY, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB. An experimental comparison of range image segmentation algorithms. IEEE Transactions on PAMI, 1996,18(7):673--689.
  • 3Hoffman R, Jain AK. Segment and classification of range images. IEEE Transactions on PAMI, 1996,9(5):608---620.
  • 4Bihnes JA. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. 1998. http://ssli.ee.washington.edu/people/bihnes/mypapers/em.ps.gz.
  • 5Redner RA, Walker HF. Mixture density, maximum likelihood and the EM algorithm. SIAM Review, 1984,26(2):195~239.
  • 6Hoover A, Powell MW. Range image segmentation comparison project. Department of Computer Science and Engineering,University of South Florida, 1996. http://marathon.csee.usf.edu/range/seg-comp/SegComp.html.
  • 7Raflery AE. Approximate Bayes factors and accounting for model uncertainty in generalizes linear model. Technical Report, 1993.http://www.stat.washington.edu/www/research/reports/1993/tr255 .ps.
  • 8Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Technical Report,1998. http://www.stat.washington.edu/www/research/reports/1998/tr329.ps.
  • 9Buhmann/M. Data clustering and learning. 2002. http://www-dbv.cs.uni-bonn.de,/pdf/buhmann.hobtann02.pdf.
  • 10Zhang J, Hsu W, Lee ML. Image mining: Issues, frameworks and techniques. In: Proceedings of the 2nd International Workshop on Multimedia Data Mining. San Francisco, 2001. 13-20.

共引文献85

同被引文献51

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部