摘要
近年来,discriminative re-ranking技术已经被应用到很多自然语言处理相关的分支中,像句法分析,词性标注,机器翻译等,并都取得了比较好的效果,在各自相应的评估标准下都有所提高。本文将以统计机器翻译为例,详细地讲解利用单纯形算法(Simplex Algorithm)对翻译结果进行re-rank的原理和过程,算法的实现和使用方法,以及re-rank实验中特征选择的方法,并给出该算法在NIST-2002(开发集)和NIST-2005(测试集)中英文机器翻译测试集合上的实验结果,在开发集和测试集上,BLEU分值分别获得了1.26%和1.16%的提高。
Recently, discriminative re-ranking technique has been applied in many fields relative to NLP (Natural Language Processing), such as parsing, pos-tagging, and machine translation etc., and performs very well. We will take SMT as an example to explain how to re-rank the translation candidates using Simplex Algorithm in detail and give the experiment results on NIST-2002(development set) and NIST_2005(test set) Chinese-to-English test sets. Our experiments show that we can gain significant improvements in BLEU by re-ranking. It can provide 1.26 % absolute increase in development set and 1.16 % absolute increase in test set.
出处
《中文信息学报》
CSCD
北大核心
2007年第3期28-33,共6页
Journal of Chinese Information Processing
基金
国家自然科学基金资助项目(60573188)