期刊文献+

基于贝叶斯网络的反舰导弹身份识别 被引量:2

Recognition for Anti-Ship Missiles Based on Bayes Network
在线阅读 下载PDF
导出
摘要 为了解决反舰导弹身份识别所面临的实时性和信息不确定性问题,提出了采用贝叶斯网络识别反舰导弹的方法。设计了4种贝叶斯网络分类器,分别在导弹仿真数据集和UCI数据集上作了测试,比较了它们各自的分类性能。实验结果表明,朴素贝叶斯网络的分类准确率虽然比其它分类器稍低,但它简单有效,稳健性比其它分类器都好,可用于反舰导弹身份的实时识别。 In this paper, Bayes Network classifiers are proposed to fulfill real-time requirements and to deal with uncertainties in the identification of anti-ship missiles (ASMs). Four types of Bayes Network classifiers are built and tested by using the simulated date sets and the date sets in UCI Repository, and their classification performance are compared. The experimental results show that the Na'fve Bayes Classifier is simple and effective, especially, its robust performance is the best among the four classifiers, and it can be used in the identification of ASMs in real time, though its classification accuracy is a little lower than the other three classifiers.
出处 《指挥控制与仿真》 2007年第2期38-40,共3页 Command Control & Simulation
关键词 贝叶斯网络 反舰导弹 身份识别 Bayesian network anti-ship missiles identification
  • 相关文献

参考文献7

  • 1[1]Friedman N,Geiger D,Goldszm idt M.Bayesian Network Classifiers Machine Learning[M].1997.
  • 2[2]Keogh EJ,Pazzani MJ.Learning Augmented Bayesian Classifiers:A Comparison of Distribution.Based and Classification-Based Approaches.In:Heckerman D,Whittaker J,eds.Procofthe 7th Intemational Workshop on Artificial Intelligence and Statistics[C].San Fran-cisco:Morgan Kaufmann,1999,225-230.
  • 3[3]Stusrt Russell,Peter Norvig.人工智能--一种现代化方法[M].第2版.姜哲,等译.北京:人民邮电出版社,2004.
  • 4石洪波,王志海,黄厚宽,励晓健.一种限定性的双层贝叶斯分类模型[J].软件学报,2004,15(2):193-199. 被引量:44
  • 5郭小宾,王壮,胡卫东.基于贝叶斯网络分类器的雷达辐射源识别方法[J].火力与指挥控制,2006,31(2):36-39. 被引量:9
  • 6张璠.多种策略改进朴素贝叶斯分类器[J].微机发展,2005,15(4):35-36. 被引量:11
  • 7[7]Newman D.J.,Hettich S.,Blake C.L.,etc.UCI Repository of Machine Learning Databases[EB/OL].Http://www.ics.uci.edu/~mlearn/MLRepository.html.

二级参考文献34

  • 1Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers. Machine Learning [M], 1997,(29):131-163.
  • 2Dougherty J, Kohavi R, Sahami M. Supervised and Unsupervised Discretization of Continuous Features. In Armand Prieditis & Stuart Russell,eds. Machine Learning [A]. Proceedings of the Twelfth Imternational Conference [C]. Morgan Kaufmann Publishers,San Francisco,CA. 1995.
  • 3Eamonn J K. Pazzani M J. Learning Augmented Bayesian Classifiers:a Comparison of Distribution-based and Classification-based Approaches [A].Heckerman David, Whittaker Joe. Uncertainty 99:the 7^th International Workshop on Artificial Intelligence and Statistics [C]. San Francisco:Morgan Kaufmann Publishers, 1999,225-230.
  • 4Chow C K, LIU C N. Approximating Discrete Probability Distribution with Dependence Trees[J].IEEE Transactions on Information Theory, 1968,14(3):462-468.
  • 5Merz C, Murphy P,Aha D(1997). UCI Repository of Machine Learning Database. Dept of Information and Computer Science[D]. University of California,Irvine, http: //www. ics. uci. edu/mlearn/MLRepository. html.
  • 6Kohavi R. (1995),A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selectio [A]. Proceeding s of the Fourteenth International Joint Conference on Artificial Intelligence [C]. 1137-1143, San Francisco, CA:Morgan Kaufman, 1995.
  • 7Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations[M].Seattle: Morgan Kaufmann Publishers,2000. 265 - 314.
  • 8Kononenko I. Semi - Naive Bayesian Classifiers[A]. In:Proceedings of European Conference on Artificial Intelligence[C].Porto, Portugal: Springer-Verlag, 1991. 206-219.
  • 9Langley P,Sage S. Induction of Selective Bayesian Classifiers[A]. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence[C]. Seattle, WA: Morgan Kaufmann Publishers, 1994. 339 - 406.
  • 10Kohavi R. Scaling up the Accuracy of Naive - Bayes Classifiers: A Decision- Tree Hybird[A]. In: Simoudis E, Han J W, Fayyad U M. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining [ C ].Menlo Park, CA: AAAI Press, 1996. 202 - 207.

共引文献61

同被引文献63

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部