期刊文献+

一种改进的贝叶斯文本分类模型

The Improvement of Nave Bayes Text Classifier
在线阅读 下载PDF
导出
摘要 朴素贝叶斯文本分类模型是一种简单而高效的文本分类模型,但是它的独立性假设属性使其无法表示现实世界属性之间的依赖关系,从而影响它的分类性能。这里提出一种改进的基于贝叶斯定理的文本分类模型——“树桩网络(Stump Network)”,并将该方法与朴素贝叶斯文本分类器和TAN(Tree Augmented Naive Bayes)文本分类器进行实验比较,结果表明,在大多数数据集上该文本分类方法具有较高的分类正确率。 Naive Bayes text classifier is a simple and effective text classification method, but its attribute independence assumption makes it unable to express the dependence among attribute in the real world, and affects its classification performance. In this paper, an improved text classification model based on Bayes theorem called Stump Network is presented. Stump Network text classifier is compared with Naive Bayes text classifier and TAN (tree augmented naive Bayes) by an experiment. Experimental results show this model has higher classification accuracy in most data sets.
作者 王潇 胡鑫
出处 《邢台职业技术学院学报》 2006年第1期19-21,共3页 Journal of Xingtai Polytechnic College
关键词 文本分类 树桩网络 朴素贝叶斯 TAN text categorization stump network naive bayes TAN
  • 相关文献

参考文献8

  • 1Zhang H,Ling C X.An Improved Learning Algorithm for Augmented Naive Bayes[A].Advances in Artificial Intelligence,LNAL 2903[3].Berlin Heidelberg:Springer- Verlag ,2003.453-456.
  • 2Jiawei Han Micheline Kamber.Data Mining Concepts and Techniques.150-180
  • 3Friedman,N.Bayesian network classifier[J].Machine Learning,29 (1997):131-161.
  • 4Keogh and Pazzani,E.,Pazzani,M .Learning Augmented Bayesian Classifiers.Proceedings of Seventh International Workshop on AI and Statistics.(1999) Ft.Lauderdale.
  • 5Friedman N,Geiger D.Goldszmidt M.Bayesian Network Classifiers[J].Machine Learning,1997,29(2-3):131-163.
  • 6A.K.McCallum and K.Nigam.A Comparision of Event Models for Naive Bayes Text Classification[J].In Proceedings of AAAI-98 Workshop on Learning for Text Categorization,pages 137-142,1998
  • 7张璠.多种策略改进朴素贝叶斯分类器[J].微机发展,2005,15(4):35-36. 被引量:11
  • 8王晓东.计算计算法与设计[M].北京:电子工业出版社,2003.

二级参考文献12

  • 1Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations[M].Seattle: Morgan Kaufmann Publishers,2000. 265 - 314.
  • 2Kononenko I. Semi - Naive Bayesian Classifiers[A]. In:Proceedings of European Conference on Artificial Intelligence[C].Porto, Portugal: Springer-Verlag, 1991. 206-219.
  • 3Langley P,Sage S. Induction of Selective Bayesian Classifiers[A]. In: Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence[C]. Seattle, WA: Morgan Kaufmann Publishers, 1994. 339 - 406.
  • 4Kohavi R. Scaling up the Accuracy of Naive - Bayes Classifiers: A Decision- Tree Hybird[A]. In: Simoudis E, Han J W, Fayyad U M. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining [ C ].Menlo Park, CA: AAAI Press, 1996. 202 - 207.
  • 5Zheng Z, Webb G I. Lazy Learning of Bayesian Rules[J].Machine Learning, 2000, 41: 53- 84.
  • 6Wang Z H,Webb G I. A Heuristic Lazy Bayesian Rule Algorithm[A]. In:Simoff S J ,Williams G J ,Hegland M. Proceedings of Australian Data Mining Workshop[C]. Sydney, Australia: Sydney University of Technology Press, 2002. 57 -63.
  • 7Pazzani M J. Constructive Induction of Cartesian Product Attributes[A]. In: Proceedings of the Conference on Information, Statistics and Induction in Science [C]. Singapore:World Scientific, 1996.66 - 77.
  • 8Wang Z H,Webb G I,Zheng F. Adjusting Dependence Relations for Semi - Lazy TAN Classifiers[A]. In: Advances in Artificial Intelligence, LNAI 2903 [ C]. Berlin Heidelberg:Springer - Verlag, 2003. 453 - 456.
  • 9Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifiers[ J ]. Machine Learning, 1997, 29 (2 - 3 ): 131 -163.
  • 10Zhang H, Ling C X. An Improved Learning Algorithm for Augmented Naive Bayes[A]. In: Proceedings of the Fifth Pacific- Asia Conference on KDD[ C ]. Hong Kong, China:Springer, 2001. 581 - 586.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部