期刊文献+

基于QPSO算法的异常检测方法

Anomaly detection approach based on quantum-behaved partical swarm optimization
在线阅读 下载PDF
导出
摘要 在入侵检测系统中,将正常状态与异常状态区分开来,是目前所面临的一个难点。针对这一问题,提出了在异常检测中运用量子粒子群算法(QPSO)对隶属度函数参数进行优化的方法。把隶属度函数里的参数组合当作一个粒子,在粒子的迭代进化中运用模糊数据挖掘的技术,可以搜索到最佳的参数组合,最大限度地把正常状态和异常状态区分开来,提高了异常检测的准确性,并通过实验验证了这一方法的可行性。 Differentiating the normal state and anomaly state is a difficult task in intrusion detection system,to solve the problem,an approach that applies Quantum-Behaved Partical Swarm Optimization(QPSO) to optimize parameters of membership functions in anomaly detection is presented.Parameters of membership functions are arranged into partical swarm,an optimal parameter-set could be derived by embedding fuzzy data mining in the process of evolution of partical,so normal state and anomaly state could be differentiated in the most extent,and the accuracy of anomaly detection is enhanced.Experiments prove the feasibility of the approach.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第8期129-130,148,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60474030) 。
关键词 异常检测 模糊数据挖掘 量子粒子群 anomaly detection fuzzy data mining Quantum Partical Swarm
  • 相关文献

参考文献6

  • 1Axelsson S.Intrusion detection systems:a survey and taxonomy,No99-15[R].Dept of Computer Engineering,Chalmers University of Technology,Sweden,2000.
  • 2Derar H,Dacier M,Wepspia.A revised taxonomy for intrusion detection systems[R].Computer Science/Mathematics,BM Research,Zurich Research Laboratory,Switzerland,1999.
  • 3Bridges S M,Vaughn R B.Intrusion detection Via fuzzy data mining[C]//Proc of 12th Annual Canadian Information Technology Security Symposium,Ottawa,Canada,2000.
  • 4Sun J,Xu W B.A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of IEEE conference on Cybernetics and Intelligent Systems,2004:111-116.
  • 5Sun J Feng B,Xu W B.Particle Swarm Optimization with particles having quantum behavior[C]//Proceedings of 2004 Congress on Evolutionary Computation,2004:325-331.
  • 6孙东,黄天戍,秦丙栓,朱天清.基于模糊数据挖掘与遗传算法的异常检测方法[J].计算机应用,2006,26(1):210-212. 被引量:7

二级参考文献9

  • 1AXELSSON S. Intrusion detection systems: A survey and taxonomy[R]. Technical Report No 99-15, Dept. of Computer Engineering,Chalmers University of Technology, Sweden, 2000.
  • 2DEBAR H, DACIER M, WEPSPI A. A Revised Taxonomy for Intrusion Detection Systems[R]. Technical Report, Computer Science/ Mathematics, IBM Research, Zurich Research Laboratory,Switzerland, 1999.
  • 3LEE W, STOLFO SJ, MOK KW. Mining audit data to build intrusion detection models[A]. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining[C]. New York:AAAI Press. 1998.
  • 4LEE W, STOLFO S J, CHAN PK, eta/. Real Time Data Mining-based Intrusion Detection[A]. Proceedings of DISCEX Ⅱ[C]. Anaheim, USA, 2001.
  • 5BRIDGES SM, VAUGHN RB. Intrusion Detection Via Fuzzy Data Mining[A]. Proc. of 12th Annual Canadian Information Technology Security Symposium[C]. Ottawa, Canada, 2000.
  • 6KUOK C, FU A, WONG M. Mining fuzzy association roles in databases[J]. SIGMOD Record, 1998, 27(1) : 41 - 46.
  • 7AGRAWAL R, SRIKANT R. Fast algorithms for mining association roles[A]. Proceedings of the 20th international conference on very large databases[C]. Santiago, Chile, 1994.
  • 8DASGUPTA D, GONZALEZ FA. An Intelligent Decision Support System for Intrusion Detection and Response[A]. MMM-ACNS[C].2001.
  • 9WANG W. Genetic Algorithm Optimization of Membership Functions for Mining Fuzzy Association Rules[A]. International Joint Conference on Information Systems, Fuzzy Theory and Technology Conference[C]. Atlantic City, 2000.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部