期刊文献+

基于模糊数据挖掘与遗传算法的异常检测方法 被引量:7

Anomaly detection approach based on fuzzy data mining and genetic algorithm
在线阅读 下载PDF
导出
摘要 建立合适的隶属度函数是入侵检测中应用模糊数据挖掘所面临的一个难点。针对这一问题,提出了在异常检测中运用遗传算法对隶属度函数的参数进行优化的方法。将隶属度函数的参数组合成有序的参数集并编码为遗传个体,在个体的遗传进化中嵌入模糊数据挖掘,可以搜索到最佳的参数集。采用这一参数集,能够在实时检测中最大限度地将系统正常状态与异常状态区分开来,提高异常检测的准确性。最后,对网络流量的异常检测实验验证了这一方法的可行性。 Defining appropriate membership functions is a difficult task in fuzzy data mining to detect intrusions. To solve the problem, an approach that applies genetic algorithm to optimize parameters of membership functions in anomaly detection was presented. Parameters of membership functions were arranged into a sequential parameter-set coded to an individual. An optimal parameter-set could be derived by embedding fuzzy data mining in the process of evolution of individual. With the parameter-set in anomaly detection, normal state of protected system could be differentiated from anomalous state in the most extent, and the veracity of anomaly detection was improved greatly. Experiments on anomaly detection to network tratffic prove the feasibility of the approach.
出处 《计算机应用》 CSCD 北大核心 2006年第1期210-212,215,共4页 journal of Computer Applications
基金 公安部科研基金资助项目(200342-823-01)
关键词 异常检测 模糊数据挖掘 遗传算法 anomaly detection fuzzy data mining genetic algorithm
  • 相关文献

参考文献9

  • 1AXELSSON S. Intrusion detection systems: A survey and taxonomy[R]. Technical Report No 99-15, Dept. of Computer Engineering,Chalmers University of Technology, Sweden, 2000.
  • 2DEBAR H, DACIER M, WEPSPI A. A Revised Taxonomy for Intrusion Detection Systems[R]. Technical Report, Computer Science/ Mathematics, IBM Research, Zurich Research Laboratory,Switzerland, 1999.
  • 3LEE W, STOLFO SJ, MOK KW. Mining audit data to build intrusion detection models[A]. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining[C]. New York:AAAI Press. 1998.
  • 4LEE W, STOLFO S J, CHAN PK, eta/. Real Time Data Mining-based Intrusion Detection[A]. Proceedings of DISCEX Ⅱ[C]. Anaheim, USA, 2001.
  • 5BRIDGES SM, VAUGHN RB. Intrusion Detection Via Fuzzy Data Mining[A]. Proc. of 12th Annual Canadian Information Technology Security Symposium[C]. Ottawa, Canada, 2000.
  • 6KUOK C, FU A, WONG M. Mining fuzzy association roles in databases[J]. SIGMOD Record, 1998, 27(1) : 41 - 46.
  • 7AGRAWAL R, SRIKANT R. Fast algorithms for mining association roles[A]. Proceedings of the 20th international conference on very large databases[C]. Santiago, Chile, 1994.
  • 8DASGUPTA D, GONZALEZ FA. An Intelligent Decision Support System for Intrusion Detection and Response[A]. MMM-ACNS[C].2001.
  • 9WANG W. Genetic Algorithm Optimization of Membership Functions for Mining Fuzzy Association Rules[A]. International Joint Conference on Information Systems, Fuzzy Theory and Technology Conference[C]. Atlantic City, 2000.

同被引文献53

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部