期刊文献+

贝叶斯回归支持向量机的软测量建模方法 被引量:3

Soft Sensor Modeling of Regression Support Vector Based on Bayesian Methods
在线阅读 下载PDF
导出
摘要 提出了一种基于贝叶斯证据框架的回归型支持向量机的参数选择和软测量建模方法。证据框架的第1层推理用来解释支持向量机的训练。证据框架的第2和第3层推理用于自动调整正则化参数和核参数并使其接近最优值。然后,将这种基于贝叶斯证据框架的回归型支持向量机用于估计聚丙烯腈生产过程的质量指标。仿真结果表明了该方法的有效性。 A parameter selection and soft sensor modeling method based on Regression support vector is presented within Bayesian evidence framework. The Level 1 inference of the evidence framework can interpret training of the SVM. And Levels 2 and 3 of the evidence framework allow automatic adjustment of the regulation parameter and the kernel parameter to their near-optimal values. Moreover, the regression support vector based on Bayesian evidence framework is used to estimate the quality figure of polyacrylonitrile productive process. Simulation results indicate the effectiveness of the proposed method.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第B07期136-138,共3页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 证据框架 贝叶斯 软测量 支持向量机 evidence framework Bayesian soft-sensor support vector machine
  • 相关文献

参考文献11

  • 1Vapnik V. The nature of statistical learning theory[M]. New York. Springer, 1995.
  • 2Vapnik V. Statistical learning theory FM]. New York: Springer, 1998.
  • 3马勇,黄德先,金以慧.基于支持向量机的软测量建模方法[J].信息与控制,2004,33(4):417-421. 被引量:37
  • 4Yan Weiwu, Shao Huihe, Wang Xiaofan. Soft sensing modeling based on support vector machine and Bayesian model selection[J]. Computers and Chemical Engineering, 2004,28:1489-1498.
  • 5熊志化,黄国宏,邵惠鹤.基于高斯过程和支持向量机的软测量建模比较及应用研究[J].信息与控制,2004,33(6):754-757. 被引量:7
  • 6Mackay D J C. Bayesian interpolation [J]. Neural Comput, 1992,4(3):415-417.
  • 7Mackay D J C. The evidence framework applied to classification networks [J]. Neural Comput, 1992,4(5) :720-736.
  • 8Kwok J T Y. The evidence framework applied to support vector machines [J]. IEEE Trans Neural Networks, 2000,11(5):1162-1173.
  • 9Cawley G C, Talbot N L C. The evidence framework applied to sparse kernel logistic regression[J].Neurocomputing, 2005,64 : 119-135.
  • 10杨慧中,张素贞,陶振麟.聚丙烯腈质量指标软测量混合模型的应用[J].化工自动化及仪表,2002,29(6):11-13. 被引量:8

二级参考文献25

  • 1朱国强,刘士荣,俞金寿,.基于支持向量机的数据建模在软测量建模中的应用[J].华东理工大学学报(社会科学版),2002,17(S1):6-10. 被引量:8
  • 2洪璋传.丙烯腈连续水相聚合的过程分析及控制[J].合成纤维工业,1994,17(2):37-41. 被引量:9
  • 3Johansen T A.Identification of None-linear Systems Using Empirical Data and Priori Knowledge--An Optimization Approach[J].Automatica,1996,32(3):337-356.
  • 4Zorzetto L F M,Wilson J A.Monitoring Bioprocesses Using Hybrid Model and an Extended Kalman Filter[J].Comp Chem Eng,1996,20(Suppl pt A):689-694.
  • 5Wilson J A,Zorzetto L F M.A Generalized Approach to Process State Estimation Using Hybrid Artificial Neural Network/Mechanistic Models[J].Comp Chem Eng,1997,21(9):951-963.
  • 6Dimitris C P,Lyle H U.A Hybrid Neural Networks-first Principles Approach to Process Modeling[J].AIChE J,1992,38(10):1499-1511.
  • 7Schubert J,Simutis R,et al.Hybrid Modeling of Yeast Production Processes--Combination of Priori Knowledge on Different Levels of Sophistication[J].Chem Eng Technol,1994,17:10-20.
  • 8Schubert J,Simutis R,et al.Bioprocess Optimization and Control:Application of Hybrid Modeling[J].J Biotech,1994,35:51-68.
  • 9Michael L T,Mark A K.Modeling Chemical Process Using Priori Knowledge and Neural Networks[J].AIChE J,1994,40(8):1328-1340.
  • 10Morris A J,Montague G A,Tham M T. Soft-sensors in industrial process control [ A ]. Applied Developments in Process Control[C]. London, UK:1989. 1 -3.

共引文献53

同被引文献25

  • 1王晓红,吴德会.基于WLS-SVM回归模型的电力负荷预测[J].微计算机信息,2008,24(4):312-314. 被引量:10
  • 2张浩然,汪晓东,张长江.一种鲁棒回归支持向量机及其学习算法[J].南京理工大学学报,2006,30(3):311-314. 被引量:6
  • 3欧阳琴,张志毅,王浩静,李军平.MATLAB在粘度法测定聚丙烯腈分子量中的应用[J].计算机与应用化学,2007,24(3):291-294. 被引量:2
  • 4VAPNIK V N. The Nature of Statistical Learning Theory [ M ]. New York :Spfinger-Verlag, 1995.
  • 5VAPNIK V N. Statistical learning Theory [ M]. New York :Springer, 1998.
  • 6VAPNIK V N. The Nature of Statistical Learning[ M]. 2nd ed. NY : Springer ,2000.
  • 7SANCHEZ A D. Advanced Support Vector Machines and Kernel Methods[ J]. Neurocomputing,2003,55 ( 1 ) :5 - 20.
  • 8RAKOTOMAMONJY A, MARY X, CANU S. Wavelet Kernel and RKHS [ C ]//Proc of Statistical Learning: Theory and Applications. Paris ,2002.
  • 9RAKOTOMAMONJY A, MARY X, CANU S. Non Parametric Regression with Wavelet Kernels[ J]. Applied Stochastics Model for Business and Industry,2005,21,153 - 163.
  • 10JIANG Z Q, FU H G, LI L J. Support Vector Machine for Mechanical Faults Classification [ J ]. J of Zhejiang University Science,2005,6A(5 ) :433 -439.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部