摘要
以南芋2号为材料,设计1/2Hoagland(H)、1/2H+10mmol·L-1CaCl2、1/2H+30%海水、1/2H+30%海水+10mmol·L-1CaCl2、1/2H+30%海水+5mmol·L-1EGTA5个处理水平,研究了Ca2+对海水胁迫下菊芋鲜重以及菊芋叶片中MDA含量、相对电导率、叶绿素含量和净光合速率(Pn)的影响,以探索Ca2+对缓解植物海水胁迫作用机制。结果表明:正常生长条件下外施10mmol·L-1Ca2+对菊芋的生长没有显著影响;在1/2H+30%海水处理下,菊芋的正常生理代谢明显受到抑制;在1/2H+30%海水+10mmol·L-1CaCl2处理下,与1/2H处理相比菊芋生物产量、叶绿素含量和Pn显著增加,与1/2H+30%海水相比菊芋生物产量、叶绿素含量和Pn显著增加,MDA含量和相对电导率显著降低。由此证明外源Ca2+可有效缓解海水胁迫所致的氧化损伤,抑制脂质过氧化作用,增加叶绿素含量,维持较高的光合速率,促进干物质积累,从而使生物产量增加。
Nanyu 2,a Jerusalem artichoke variety,was used to examine the effects of calcium ion on seawater-stressed Jerusalem artichoke in its fresh weights and the MDA contents ,relative conductivities ,chlorophyll contents,net photosynthetic rates of its leaves in five treatments, 1/2 Hoagland, 1/2 Hoagland+ 10 mmol·L^-1 CaCl2,1/2 Hoagland+30% seawater,1/2 Hoagland+30% seawater +10 mmol ·L^-1 CaCl2, and 1/2 Hoagland+30% seawater+ 5 mmol ·L^-1 EGTA. The results showed that the application of 10 mmol·L^-1 Ca^2+ did not affect Jerusalem artichoke growth under normal growth conditions,the treatment of 1/2 Hoagland+30% seawater remarkably inhibited normal physiological metabolisms in Jerusalem artichoke, the treatment of 1/2 Hoagland+30% seawater + 10 mmol·L^-1 CaCl2 significantly increased the fresh weight ,chlorophyll content and net photosynthetic rates of Jerusalem artichoke compared with the treatment of 1/2 Hoagland,and significantly increase the fresh weight ,chlorophyll content and net photosynthetic rates of Jerusalem artichoke but significantly decreased the MDA content and relative conductivity of Jerusalem artichoke compared with the treatment of 1/2 Hoagland+30% seawater. These proved that Ca^2+ could effectively abate the oxidative damage resulting from seawater stress,inhibit the lipid oxidation, increase the chlorophyll content,and enhance the dry matter accumulation thus increasing the biomass.
出处
《西北植物学报》
CAS
CSCD
北大核心
2006年第6期1267-1271,共5页
Acta Botanica Boreali-Occidentalia Sinica
基金
863海洋生物技术主题项目(2003AA627040)
关键词
CA^2+
菊芋
海水胁迫
光合作用
Ca^2+
GC/MS
Jerusalem artichoke
seawater stress
photosynthesis