摘要
本文简要分析低阶实时仿真算法,构造实时的高阶(s=6,p=5)实时Runge—Kutta方法,分析了该方法的收敛阶条件和稳定性,并具体给出了三组实时仿真算法公式,数值试验结果表明,构造的实时高阶Runge—Kutta方法是可行的、有效的。
In this paper,low-order methods for real-time simulation are analysed, high orderreal-time Runge-Kutta methods are constructed. Their order conditions and stability are studied.The numerical experiments show that the high-order Runge-Kutta methods for real-timesimulation are effective.
出处
《系统工程与电子技术》
EI
CSCD
1996年第1期37-47,共11页
Systems Engineering and Electronics