期刊文献+

具有最大稳定域的实时RK4公式 被引量:11

Real-time RK4 Formula with Maximum Stability Region
在线阅读 下载PDF
导出
摘要 实时仿真通常要求计算机在一个动态循环中与外部硬件相互作用。外部数据必须从输入信号中采集,并融入到数值积分算法中以计算出状态变量。同样,从积分过程中求得的数据也必须及时被输出。因此,一般希望能选择较大的积分步长,以保证能有足够的计算时间。首先将实时四阶龙格-库塔公式的稳定域问题化为一个约束求极大值问题,利用优化方法,找到了具有最大稳定域的实时四阶龙格-库塔公式应满足的条件。然后,根据局部截断误差与相关系数的关系,将其化为一个约束求极小值问题,并最终导出了一个新的实时RK4公式。该公式不仅具有最大的稳定域,而且局部截断误差函数值也小于其它已知的实时RK4公式。仿真结果表明,该公式是有效可行的。 Real-time simulation often requires a computer to interact with external hardware in a dynamic loop. Data must be sampled from input signals and incorporated into the numerical integration algorithm to calculate the state variables. Also, data from the integration process must be output-ted in time. Thus, the ability for choosing a larger integration step-size is often demanded, so as to guarantee enough time for computation. The problem concerned with the stability region of real-time fourth-order Runge-Kutta formulae is converted into the one of restricted optimization for maximum, and the condition for maximum stability region of real-time fourth-order Runge-Kutta formulae is found. Also, based on the relation of local truncation error and related coefficients, a problem of restricted optimization for minimum is gotten, and a new real-time RK4 formula is deduced finally. The formula has not only maximum stability region, but also the function value of local truncation error which is smaller than the other known real-time RK4 formulae. The simulation results show that the proposed formula is feasible and effective.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第2期306-308,312,共4页 Journal of System Simulation
基金 高等学校博士学科点专项科研基金(20040286012)
关键词 实时仿真 龙格-库塔公式 稳定域 局部截断误差 优化 real-time simulation Runge-Kutta formula stability region local truncation error optimization
  • 相关文献

参考文献9

  • 1谢亚军,刘德贵.用于实时仿真的高阶Runge—Kutta方法[J].系统工程与电子技术,1996,18(1):37-47. 被引量:5
  • 2Bernstein D S.The treatment of inputs in real-time digital simulation [J].Simulation (S0037-5497),1979,33(2):65-68.
  • 3蒋珉,曹大铸,徐刚.扩大实时RK公式的应用范围[J].控制与决策,1989,4(6):53-57. 被引量:7
  • 4柴干,胡寿松,王永.歼击机自修复控制系统仿真研究[J].航空学报,1999,20(2):122-126. 被引量:5
  • 5Ralston A.A first course in numerical analysis [M].Mc GrawHall,New York,1966.
  • 6Lambert J D.Computational methods in ordinary differential equations [M].Wiley,New York,1973.
  • 7Yang X Q,Teo K L,Caccetta L.Optimization methods and applications [M].Kluwer Academic Publishers,Dordrecht,2001.
  • 8Tanaka M.Runge-Kutta formulas with the ability of error estimation [J].Rep.Stat.Appl.Res.JUSE (S0034-4842),1966,13(3):42-61.
  • 9Fehlberg E.Lower-order classical Runge-Kutta formulas with step- size control and their application to some heat transfer problems [R].NASA Report TR315,1969.

二级参考文献3

  • 1王永 胡寿松.歼击机模型参考自修复控制[J].东南大学学报,1996,26(5):41-45.
  • 2王永,东南大学学报,1996年,26卷,5期,41页
  • 3熊光楞,孙国基.数字仿真技术及其应用(综述)[J]信息与控制,1983(04).

共引文献9

同被引文献59

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部