期刊文献+

基于PCA与ICA特征提取的入侵检测集成分类系统 被引量:25

An Intrusion Detection Ensemble System Based on the Features Extracted by PCA and ICA
在线阅读 下载PDF
导出
摘要 入侵检测系统不仅要具备良好的入侵检测性能,同时对新的入侵行为要有良好的增量式学习能力.提出了一种入侵检测集成分类系统,将主成分分析(PCA)和独立成分分析(ICA)与增量式支持向量机分类算法相结合构造两个子分类器,采用集成技术对子分类器进行集成.系统利用支持向量集合对已有的入侵知识进行压缩表示,并采用遗传算法自适应地调整集成分类系统的权重.数值实验表明:集成分类系统通过自适应训练权重,综合了两种特征提取子分类器的优点,具有更好的综合性能. Intrusion detection system should be able to detect intrusion behaviors and learn novel intrusion types. In this paper, an intrusion detection ensemble system is proposed, which is integrated by two incremental SVM (support vector machine) subsystems. The two subsystems process the features extracted by PCA and ICA respectively. The intrusion information is represented by support vectors set and the weight of the integration is adjusted by genetic algorithm. Experiments show that the ensemble system combines the advantages of the two subsystems, and outperforms each of the subsystems and the standard SVM system.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第4期633-638,共6页 Journal of Computer Research and Development
基金 云南省自然科学基金项目(2005F0028Q) 云南省教育厅基金项目(5Y0588D)
关键词 集成 支持向量机 入侵检测 主成分分析 独立成分分析 ensemble support vector machine intrusion detection PCA ICA
  • 相关文献

参考文献11

  • 1E.Biermann,E.Cloete,L.M.Venter.A comparison of intrusion detection systems.Computers and Security,2001,20 (8):676~683
  • 2T.Verwoerd,R.Hunt.Intrusion detection techniques and approaches.Computer Communications,2002,25 (15):1356 ~1365
  • 3D.Joo,T.Hong,I.Han.The neural network models for IDS based on the asymmetric costs of false negative errors and false positive errors.Expert Systems with Applications,2003,25 (1):69~ 75
  • 4A.Hyv(a)rinen,E.Oja.Independent component analysis:Algorithms and applications.Neural Networks,2000,13 (4-5):411 ~430
  • 5V.N.Vapnik.The Nature of Statistical Learning Theory.Berlin:Springer-Verlag,1995
  • 6李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79
  • 7周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:248
  • 8Z.H.Zhou.J.X.Wu.W.Tang.Ensembling neural networks:Many could be better than all? Artificial Intelligence,2002,137 (1/2):239~263
  • 9Y.Liu,X.Yao.Ensemble learning via negative correlation.Neural Networks,1999,12(10):1399~1404
  • 10C.L.Blake,C.J.Merz.UCI repository of machine learning databases.http:// kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,1998

二级参考文献9

  • 1张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995..
  • 2Liu Yanheng, Tian Daxin, Wang Aimin. ANNIDS: intrusion detection system based on artificial neural network [A]. 2003 International Conference on Machine Learning and Cybernetics, Xi′an, China, 2003.
  • 3Kumar S. Classification and detection of computer intrusions [D]. PhD Thesis. West Lafayette, USA: Department of Computer Science, Purdue University, 1995.
  • 4Zhao Junzhong, Huang Houkuan. An evolving intrusion detection system based on natural immune system[A]. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing, China, 2002.
  • 5Hyvrinen A, Oja E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000, 13(4-5): 411-430.
  • 6瓦普尼克 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7崔伟东,周志华,李星.神经网络VC维计算研究[J].计算机科学,2000,27(7):59-62. 被引量:3
  • 8周志华,何佳洲,陈世福.神经网络国际研究动向——2000年国际神经网络联合大会评述[J].模式识别与人工智能,2000,13(4):415-418. 被引量:8
  • 9李辉,管晓宏,昝鑫,韩崇昭.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807. 被引量:79

共引文献329

同被引文献233

引证文献25

二级引证文献247

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部