期刊文献+

基于粗糙集神经网络的网络故障诊断新方法 被引量:28

A New Network Fault Diagnosis Method Based on RS-Neural Network
在线阅读 下载PDF
导出
摘要 针对传统网络故障知识库冗余度高和稳定性难以两全的缺陷 ,综合运用神经网络方法和粗糙集理论 ,提出了RSNN算法 ,实现不一致情况下的规则获取和学习样本的净化处理 该算法具有简化样本、适应性强、容错性高和不易陷入局部最小点等特点 ,能有效处理网络故障诊断中噪声或不相容的信息 实验表明 ,利用该方法实现的系统与同类的其他方法相比 。 In this paper, a design method for network fault diagnosis systems is put forward by proposing RSNN algorithm, which tightly combines neural network and rough sets Reduced information table can be obtained, which implies that the number of evaluation criteria is reduced with no information loss through rough set approach And then, this reduced information is used to develop classification rules and train neural network to infer appropriate parameters The rules developed by RS neural network analysis show the best prediction accuracy if a case does match any of the rules It's capable of overcoming several shortcomings in existing diagnosis systems, such as a dilemma between stability and redundancy The experiment system implemented by this method shows a good diagnostic ability
出处 《计算机研究与发展》 EI CSCD 北大核心 2004年第10期1696-1702,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目 ( 60 2 73 13 7)
关键词 粗糙集 神经网络 故障诊断 rough sets neural network fault diagnosis
  • 相关文献

参考文献8

  • 1D Gavalas, D Greenwood, M Ghanbari, et al. Advanced network monitoring applications based on mobile/intelligent agent technology. Computer Communications, 2002, 23(8): 720~730
  • 2Basseville M, Nikiforov I V. Detection of Abrupt ChangesTheory and Application. New Jersey: Prentice-Hall Englewood Cliffs, 1993
  • 3Rolf Iserman. Process fault detection based on modeling and estimation method-A survey. Automatica, 1999, 29(4): 815~835
  • 4R Tagliaferri, A Eleuteri, M Meneganti, et al. Fuzzy min-max neural network: From classification to regression. Soft Computing, 2001, 5(1): 69~76
  • 5Phillip Bullell, Dave Inman. An expert system for the analysis of faults in an electricity supply network: Problems and achievements. Computer in Industry, 1998, 37(5): 113~123
  • 6张文修,米据生,吴伟志.不协调目标信息系统的知识约简[J].计算机学报,2003,26(1):12-18. 被引量:190
  • 7Raghunathan Rengaswamy, Venkat Venkatasubramanian. A fast training neural network and its updating for incipient fault detection and diagnosis. Computer and Chemical Engineering,2000, 24(2): 431~437
  • 8E N Skoundrianos, S G Tzafestas. Fault diagnosis via local neural networks. Mathematics and Computers in Simulation, 2002, 60(3-5): 169~180

二级参考文献6

  • 1[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 2[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 3[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 4[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 5[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 6[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120

共引文献189

同被引文献287

引证文献28

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部