期刊文献+

不同排尘结构旋风分离器的分离特性 被引量:20

Separation Characteristics of Cyclone Separators with Different Dust Outlet Geometries
在线阅读 下载PDF
导出
摘要 在欧拉-拉格朗日坐标系中对常规旋风分离器和两个不同直管长度旋风分离器内气固流动特性进行了数值模拟.模拟时气相场采用雷诺应力输运模型,应用随机轨道模型模拟湍流流场中颗粒的运动轨迹,并考虑气固两相之间的双向耦合.给出了不同排尘结构旋风分离器的速度、湍动能分布.对不同排尘结构旋风分离器的分离性能进行了实验研究.结果表明,底部加延长的直管可以使灰斗中气流的速度和湍动能得到较大衰减,能有效防止已分离颗粒的二次扬尘.直管内仍具有一定的分离能力,分级效率实验表明,加直管后旋风分离器分级效率有一定的提高.对于给定的旋风分离器,直管长度应有一最优值. The gas-solid flow characteristics in a conventional cyclone separator and two cyclone separators with prolonged vertical tubes were simulated in Euler-Lagrangian framework. The gas flow fields were simulated with Reynolds stress transport model (RSTM). The effect of instantaneous turbulence on particle tracking was taken into account by means of the stochastic tracking approach and the two-way coupling between gas and solid was considered. The velocity and turbulent kinetic energy profiles of the cyclone separators were presented. The result indicates that the gas eddy in the dustbin of conventional cyclone separator is still intense. On the other hand, the cyclone separator attached a vertical tube makes the end of the vortex locate in the vertical tube, which can avoid the re-entrainment of already separated dust effectively. Additionally, the prolonged vertical tube can increase the separation space of dust, and experiment shows that the prolonged vertical tube can improve the separation efficiency by a slightly increased pressure drop. However, for an even longer tube, the separation efficiency is slightly reduced. Thus, there is an optimal tube length for a given cyclone separator.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2006年第2期169-174,共6页 Journal of Combustion Science and Technology
关键词 旋风分离器 排尘结构 分离性能 数值模拟 cyclone separator dust outlet geometry separation performance numerical simulation
  • 相关文献

参考文献15

  • 1Hoffmann A C,Jonge R De,Arends H,et al.Evidence of the natural vortex length and its effect on the separation efficiency of gas cyclones[J].Filtration & Separation,1995,32 (8),799-804.
  • 2Stefen O,Jakob W,Gemot Staudinger.Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry[J].Powder Technology,2003,138 (2-3),239-251.
  • 3Stefen O,Gemot S.The dust outlet of a gas cyclone and its effects on separation efficiency[J].Chemical Engineering Technology,2001,24 (12),1259-1263.
  • 4钱付平,章名耀.底部加直管旋风分离器的性能预测[J].热能动力工程,2005,20(1):41-44. 被引量:16
  • 5Boysan F,Ayer W H,Swithenbank J A.Fundamental mathematical modelling approach to cyclone design[J].Transaction of Institute Chemical Engineers,1982,60 (4),222-230.
  • 6Wang B,Xu D L,Xiao G X,et al.Numerical study of gas solid flow in a cyclone separator[C] // Third International Conference on CFD in the Minerals and Process Industries CSIRO.Australia,2003:371-376.
  • 7Hoekstra A J,Derksan J J,Van Den Akker H E A.An experimental and numerical study of turbulent swirling flow in gas cyclones[J].Chemical Engineering Science,1999,54(13/14),2055-2065.
  • 8Griffths W D,Boysan F.Computational fluid dynamics (CFD) and empirical modelling of the performance of a numerical of cyclone samplers[J].Journal of Aerosol Science,1996,27(2):281-304.
  • 9钱付平,章名耀.旋风分离器分离性能的经验模型与数值预测[J].东南大学学报(自然科学版),2005,35(1):35-39. 被引量:26
  • 10Ji Zhongli,Wu Xiaolin,Shi Mingxian.Experimental research on the natural turning length in the cyclone[C]//Proceedings of Filtech Europa 91 Conference.Karlsruhe,Germany,1991:583-589.

二级参考文献22

  • 1姬忠礼,吴小林,时铭显.旋风分离器自然旋风长的实验研究[J].石油学报(石油加工),1993,9(4):86-91. 被引量:15
  • 2Barth W. Calculation and layout of cyclone separators,based on recent investigations, with aid of simplified theories of flow conditions in cyclone [ J ]. Brennstoff-Waerme-Kraft, 1956,8(1): 1-9.
  • 3Shepherd C B, Lapple C E. Flow pattern and pressure drop in cyclone dust collectors [ J ]. Industrial and Engineering Chemistry, 1939, 31 ( 8 ) : 972 - 984.
  • 4Casal J, Martinez J M. Better way to calculate cyclone pressure drop [ J]. Chemical Engineering, 1983, 90(2) : 99- 115.
  • 5Dirgo J. Relationships between cyclone dimensions and performance [ D]. Harvard University, USA, 1988.
  • 6Coker A K. Understand cyclone design [ J]. Chemical Engineering Progress, 1993,89(12) : 51 -55.
  • 7Griffiths W D, Boysan F. Computational fluid dynamics (CFD) and empirical modeling of the performance of anumerical of cyclone samplers [ J ]. J Aerosol Sci,1996, 27(2) : 281 -304.
  • 8Hoekstra A J, Derksen J J, van den Akker H E A, et al. An experimental and numerical study of turbulent swirling flow in gas cyclones [ J ]. Chemical Engineering Science, 1999, 54( 13 ) : 2055 - 2065.
  • 9Izoia D L, Leith D. Effect of cyclone dimensions on gas flow pattern and collection efficiency [ J ]. Aerosol Science and Technology, 1989, 10(3) ; 491 -500.
  • 10Fluent Inc. Fluent user's guide [R]. America: Lluent Inc, 2003.

共引文献73

同被引文献189

引证文献20

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部