期刊文献+

基于信息熵的多传感器信息融合 被引量:2

Multi-Sensor Information Fusion Based on Information Entropy
在线阅读 下载PDF
导出
摘要 多传感器信息融合是多源信息综合处理的一项新技术。从信息论的观点出发,导出多传感器信息融合系统中的冗余性与互补性的定量描述,分析了传感器冗余性与互补性特点,并从该角度出发,利用最小条件熵准则来解决多传感器信息融合中的目标识别问题,该方法的主要优点是可以充分有效利用多传感器信息,使融合系统满足获得的信息量最大。 Multi - sensor information fusion is a new technology of comprehensive processing of the information of much sources. This article makes a quantitative description of the redundancy and complementary from the viewpoint of information theory, and analyzes its characteristic. It utilizes minimum condition entropy criterion to solve the problem of goal discerning in multisensor information fusion. The major adeantage of this method can fully utilize information of multi - sensor and minimize the amount of sensors.
出处 《计算机与数字工程》 2005年第8期77-79,共3页 Computer & Digital Engineering
关键词 多传感器信息融合 冗余性 互补性 multi- sensor information fusion, redundancy, complementary
  • 相关文献

参考文献4

二级参考文献12

  • 1[1]Zhou B Y, Leung H. Minimum entropy approach for multisensor data fusion[A]. In:Larson P ed. IEEE Signal Processing Workshop on High-Order Statistics(SPW-HOS'97)[C].NY:Prentice Hall, 1997.336-339.
  • 2[2]Jansen M, Roose D. Bayesian correction of wavelet threshold procedures for images denoising[J]. Bayesian Statistical Science, 1998,35:245-251.
  • 3[3]Luca A D,Termini S. A definition of non-probabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972,20:301-312.
  • 4[4]Couso I, Montes S. Measure of fuzziness and information theory[A]. In:Soheil S ed. Information Processing and Management of Uncertainty in Knowledge[C]. NY:Prentice Hall, 1996.501-505.
  • 5[5]Fioretto A, Sgarro A. A second step information measure and the uncertainty of bodies of evidence[A]. In:Soheil S ed. Information Processing and Management of Uncertainty in Knowledge[C]. NY:Prentice Hall, 1996.687-691.
  • 6[6]Connant R C. Detecting subsystems of a complex system[J]. IEEE Transactions on Systems, Man and Cybernetics, 1972,2(4):550-553.
  • 7[7]Zellner A, Highfield R A. Calculation of maximum entropy distributions and approximation of marginal posterior distributions[J]. Journal of Econometrics, 1988,37:195-209.
  • 8[8]Djafari A M. Entropy in signal processing[J]. Traitement du Signal, 1998,15(6):545-551.
  • 9[9]Chakik F E. Maximum d'entropie et reseaux de neurones pour la classification[J]. These dedoctorat 3eme cycle, Institut Polytechnique de Grenoble, 1998,9:236-241.
  • 10[10]Christophe D. Utilisation d'un critere entropique dans les systemes de detection[J]. These de doctorat 3eme cycle, Universite des Sciences et Technologies de Lille, 1998,12:125-130.

共引文献45

同被引文献56

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部