期刊文献+

多传感器目标识别系统的特征优化方法 被引量:7

Feature optimization for multi-sensor target recognition system
原文传递
导出
摘要 来自多传感器的目标特征往往是高维数的,并且包含了更多的冗余信息和噪声。为了减小数据获取的代价,提高目标识别器的性能和效率,提出了基于遗传算法(GA)的多传感器目标识别系统特征优化方法。将遗传算法与神经网络目标分类器结合,通过识别结果的反馈信息,控制GA的遗传进化方向,从而实现特征优化。为了克服遗传算法的未成熟收敛问题,提出了相关选择与自适应遗传算子相结合的改进遗传算法。仿真实验结果验证了方法的有效性。 The features of target from multi-sensor system are generally high dimensional, redundant and noisy. A genetic algorithm (GA) based feature optimization approach was proposed for multi-sensor target recognition system to reduce the cost of acquiring data and improve the performances and efficiency of recognizer. Incorporated a neural network classifier, the evolution of GA was directed to optimization with the information feedback. Since a standard GA has the shortage of premature convergence, an improved genetic algorithm was designed to prevent it. The simulated experimental results for the feature optimization show that the proposed method is effective.
出处 《光学技术》 EI CAS CSCD 北大核心 2005年第3期420-423,426,共5页 Optical Technique
关键词 多传感器 数据融合 特征优化 目标识别 遗传算法 feature optimization genetic algorithm multi_sensor neural network
  • 相关文献

参考文献8

  • 1陈国良 王煦法 等.遗传算法及其应用[M].北京:人民邮电出版社,1999,5.433.
  • 2Holland J H. Adaptation in natural and artificial systems[M].Cambridge, MA: MIT press, 1975.
  • 3Matsui K. New selection method to improve the population diversity in genetic algorithms[C]. IEEE International Conference on SMC, 1999,625-630.
  • 4张良杰,毛志宏,李衍达.遗传算法中突变算子的数学分析及改进策略[J].电子科学学刊,1996,18(6):590-595. 被引量:26
  • 5Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Trans on System, Man and Cybernetics, 1994, 24(4): 656-667.
  • 6恽为民,席裕庚.遗传算法的运行机理分析[J].控制理论与应用,1996,13(3):297-304. 被引量:80
  • 7Siedlecki W, Sklansky J. On automatic feature selection internet[J]. Journal of Pattern Recognition and Artificial Intelligence,1988, 2 (2): 197-220.
  • 8Rudolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans. On Neural Networks, 1994, 5(1): 96-101.

二级参考文献4

  • 1陈根社,陈新海.遗传算法的研究与进展[J].信息与控制,1994,23(4):215-222. 被引量:109
  • 2恽为民,博士学位论文,1995年
  • 3Yao X,Int J Intelligent Systems,1993年,8卷,539页
  • 4张良杰,Interational Conference on Neural Information Processing,1994年

共引文献180

同被引文献84

引证文献7

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部