摘要
利用描述多刚体系统在空间的位置和连接形态的位形矩阵,并引入“折算惯量张量矩阵”和“当量转动惯量矩阵”的概念,在牛顿一欧拉方法的基础上,建立用矩阵形式表示的多刚体系统的冲量方程和冲量矩方程.利用这组方程可以计算在外碰撞冲量作用下,系统运动状态的改变量以及各铰中产生的约束反力的内碰撞冲量和冲量矩.
Based on the concept of the'Confiquration matrixs, impact dynamics for multi-body system is studied. It presents concepts of the convertible inertia tensor matrix and the equivalent moment of inertia. establishes impulse equations and angular impulse equations which take the form of matrices. These equations describe relationships between impulse and momentum or angular impulse and angular momentum of whole system. The derivation of dynamic equations is easy. the expressions of the equations are concies, and it is convenient to solve them by numerical integration.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
1995年第1期96-102,共7页
Journal of Beijing University of Aeronautics and Astronautics
关键词
刚体动力学
树形
动力学方程
矩阵
rigid body kinetics
tree form
kinetics equations
matrices (mathematics)