期刊文献+

基于Lyapunov指数谱的非线性隔振系统混沌运动参数区域预测 被引量:1

Prediction for parameter region of chaos of nonlinear vibration isolation system based on Lyapunov exponential spectrum
在线阅读 下载PDF
导出
摘要 Lyapunov指数是定量描述系统运动状态的重要参数之一.讨论了Lyapunov指数谱的数值计算方法以及它和总时间的关系,利用混沌状态下系统的最大Lyapunov指数大于零的性质预测了非线性隔振系统处于混沌运动状态时两个可变参数的参数区域. The Lyapunov exponents are ones of the importantparameters for describing quantitatively the system state of motion. The numerical calculation method of the Lyapunov exponential spectrum and its relation with the totaltime are discussed.Subsequently,according to the principle, namely the largest Lyapunov exponent will bepositive if the system is inchaotic motion state, the parameter regions where the system with two or more variableparameters is in chaotic motionare predicted.
作者 朱石坚 俞翔
出处 《海军工程大学学报》 CAS 2003年第6期8-12,16,共6页 Journal of Naval University of Engineering
关键词 LYAPUNOV指数 定量描述 系统运动状态 非线性 隔振 混沌 nonlinearity vibration isolation Lyapunov exponents chaos
  • 相关文献

参考文献8

  • 1朱石坚,姜荣俊,何琳.线谱激励的混沌隔振研究[J].海军工程大学学报,2003,15(1):19-22. 被引量:22
  • 2Jiang R J, Zhu S J. Prospect of applying controlling chaotic vibration in the waterborne-noise confrontation [A]. Proceeding of 18th Binnial Conference on Mechanical Vibration and Noise [C]. USA, Pittsburgh: ASME, 2001: DETC 2001/VIB-21663.
  • 3姜荣俊,朱石坚,何琳.混沌隔振装置的设计[J].海军工程大学学报,2003,15(1):35-37. 被引量:2
  • 4刘曾荣.混沌的微扰判据 [M].上海:上海科技教育出版社,2000.
  • 5蔡艳岭.Lyapuonv特征指数谱的研究及其应用 [A].张伟,杨绍普,许鉴,等.非线性系统的周期振动和分叉 [C].北京:科学出版社,2002.
  • 6Wolf A, Jack B, Swift, et al. Determining Lyapunov exponents from a time series [J]. Physica D., 1985, 16: 285-317.
  • 7凌复华.非线性动力学系统的数值研究[M].上海:上海交通大学出版社,1989..
  • 8Andrea R Z, Jason A C G. Lyapunov exponents for a duffing oscillator [J]. Physica D., 1995, 89: 71-82.

二级参考文献21

  • 1Ott E, Grebogi C, Yorke J A. Controlling chaos[J]. Phys. Rev. Lett., 1990,64(11):1196-1199.
  • 2Romeiras F J, Grebogi C, Ott E, et al. Controlling chaotic dynamic systems[J]. Phys. D, 1992,58:165.
  • 3Pyragas K. Continuous control of chaos by self-controlling feedback[J]. Phys. Lett. A,1992,170:421.
  • 4Fradkov A L, Pogromsky A Y. Introduction to Control of Oscillations and Chaos[M]. Singapore: World Scienti-fic, 1998.
  • 5Kapitaniak T. Synchronization of chaos using continuous control[J]. Phys. Rev. E, 1994,50:1642-1644.
  • 6Zhang H Z, Qin H S. Adaptive control of chaotic systems with uncertainties[J]. International Journal of Bifurcation and Chaos, 1998,8(10):2041-2046.
  • 7Wang J, Wang X H. Parametric adaptive control in nonlinear dynamical systems[J]. International Journal of Bifurcation and Chaos, 1998,8(11):215-223.
  • 8Calvo O, Julyan H E. Fuzzy control of chaos[J]. International Journal of Bifurcation and Chaos, 1998,l8(8):1743-1747.
  • 9Braiman Y, Goldhirsch I. Taming chaotic dynamics with weak periodic perturbation[J]. Phys. Rev. Lett., 1991,66:2545-2548.
  • 10Kapitaniak T. Targeting unstable stationary states of Chua′s circuit[J]. J. Circ. Syst. Comput., 1993,3:195-199.

共引文献25

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部