期刊文献+

基于模糊聚类分析的织物质量分级方法 被引量:5

Fuzzy Clustering Analysis Based Method for Fabric Sample Grading
在线阅读 下载PDF
导出
摘要 织物性能的分类、分级信息是纺织品质量评估的直观表述。在织物客观评估的基础上,提出了基于减法聚类与模糊C 均值(FCM)聚类的集成方法用于纺织品质量评估分析。该方法以减法聚类算法得出的样本的最佳分类数为基础,用FCM聚类算法得到具体的分类结果。将聚类中心的特征值之和定义为分级指数,进一步用于解决织物质量的分级问题。通过对法国鲁贝高等纺织工程学院自织的43块棉针织物的分析,证明了以上方法在处理纺织品质量分类、分级问题中的有效性。 The performance of textile products is a straightforward expression of their quality evaluation. In this paper, based on objective evaluation of textile products. An integrated method was proposed by combining subtractive clustering and fuzzy C-means (FCM) clustering algorithms. In the method, after obtaining the best number of classes for the textile samples by using the subtractive clustering algorithm, the clustering results can be further classified by using FCM algorithm. By defining the grading factor, which is the sum of eigenvalues of the clustering centers, the problem of objective grading could be solved. The effectiveness of the method in textile clustering and grading is proved by using 43 cotton samples which are self-knitted by Ecole Nationale Supérieure des Arts et Industries Textiles, France.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期54-58,共5页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金(60474037 60004006) 新世纪优秀人才支持计划 教育部高等学校博士点专项基金(20030255009)
关键词 织物质量 纺织品质量 织物性能 棉针织物 纺织工程 分级方法 客观评估 FCM 处理 问题 fuzzy C-means, subtractive clustering, fuzzy clustering, textile classifying, textile grading
  • 相关文献

参考文献5

  • 1侯彩虹,崔运花,曾宪奕,丁永生.纺织品感官评估的进展与展望[J].东华大学学报(自然科学版),2003,29(3):110-114. 被引量:12
  • 2Meilgaard M, Civille G V, Carr B T. Sensory Evaluation Techniques (3rd ed.). USA, Florida: CRC Press, 1999: 3-5.
  • 3Kawabata S, Niwa M. Objective measurement of fabric hand, Modern Textile Characterization Methods (Eds. M. Raheel and M. Dekker), 1996: 329-354.
  • 4Zeng X Y, Koehl L, Ding Y S, et al. Analysis and comparison of French and Chinese sensory panels on fabric hand evaluation by using fuzzy techniques . In Con Fuzzy Information Processing Theories and Applications (FIP2003) Beijing, China, 2003: 721-726.
  • 5Bezdek J. Pattern Recognition with Fuzzy Objective Function Algorithms. USA: Plenum Press, 1981.

二级参考文献6

共引文献11

同被引文献26

  • 1贺方松,张文赓.纺织生产过程的状态最优估计[J].中国纺织大学学报,1996,22(6):87-95. 被引量:1
  • 2张戎.基于统型的后勤机动装备小修保养器材周转储备研究[D].天津:中国人民解放军军事交通学院,2009.
  • 3卢文岱.SPSSforWindows统计分析[M].北京:电子工业出版社,2004.338-388.
  • 4王亮.军用车辆器材保障学[M].天津:中国人民解放军军事交通学院,2007.67-80.
  • 5Pedrycz A,Reformat M.Hierarchical FCM in a stepwise discovery of structure in data[J].Soft Computing,2005,10(3):244-256.
  • 6Bandyopadhyay.Satellite image classification using genetically guided fuzzy clustering with spatial information[J].Int J of Remote Sensing,2005,26(3):579-593.
  • 7Tran D,Wagner M.Generalized fuzzy hidden Markov models for speech recognition[C].2002 AFSS Int Conf on Fuzzy Systems.Calcutta:Springer-Verlag GmbH,2002:345.
  • 8Lotfi A Zadeh,Berkeley C A.Fuzzy logic toolbox for use with MATLAB version 2.2.1[M].Natick:The MathWorks,Inc,2005.
  • 9Shitong W,Chung K F,Hongbin S,et al.Note on the relationship between probabilistic and fuzzy clustering[J].Soft Computing,2004,8(5):366-369.
  • 10Carl de Boor.Curve fitting toolbox for use with MATLAB[M].Natick:The MathWorks,Inc,2005.

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部