期刊文献+

基于结合能量模型的往复泵泵阀故障诊断研究 被引量:5

Fault diagnosis approach based on binding energy model for valves of reciprocating pumps
在线阅读 下载PDF
导出
摘要 基于生物免疫系统抗原与抗体互识别的结合能量模型,结合矩阵的奇异值分解,研究了适于三缸往复泵夏阀故障诊断的新方法.通过对三缸往复泵泵阀实际故障的诊断分析,表明基于结合能量的故障诊断方法具有较强的容错性和鲁棒性,并具有可视化及可解释性好等特点。 Combining the singular value decomposition of matrix a new approach of fault diagnosis for the valves of three-cylinder reciprocating pumps is investigated based on the binding energy model of the recognizing process between antigens and antibodies in natural immune systems. The result of fault diagnosis for pump valves in three-cylinder reciprocating pump shows the methods proposed is of tolerance and robust. In addition, the new fault diagnosis approach is visible and explainable.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2005年第1期104-107,114,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(50475183)黑龙江省教育厅科学技术研究项目(10541010).
关键词 结合能量模型 矩阵奇异值分解 故障诊断 Antibodies Antigens Binding energy Cylinders (containers) Failure analysis Mathematical models Matrix algebra Robustness (control systems)
  • 相关文献

参考文献8

二级参考文献14

  • 1时文刚 徐世昌 等.基于小波包分析的三缸往复泵泵阀故障诊断方法[J].振动工程学报,2000,13:333-337.
  • 2余鄂西,矩阵论,1995年
  • 3Osuna E, Freund R, Girosi F. Training support vector machines: an application to face detection. In: Proceedings of Computer Vision and Pattern Recognition 97', Puerto Rico, 1997. 130 ~ 136.
  • 4Platt J. Fast training of SVMs using sequential minimal optimization. In:Scholkpf B, Burges C, Smola A, eds., Advances in kernel methods-support vector machine learning, Cambridge: MIT Press, 1998.
  • 5Berther T, Davies P. Condition monitoring of check valves in reciprocating pumps. Tribology Transactions, 1991, 34:321 ~326.
  • 6Xu W H, Fu K. An intelligent diagnostic system for reciprocating machine.In: Proceedings of IEEE International Conference on Intelligent Processing Systems, Beijing, 1997, 1 520~ 1 522.
  • 7Sbi Wengang, Wang Rixin, Huang Wenhu. Application of rough set theory to fault diagnosis of check valves in reciprocating pumps. In: Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, Toronto, 2001. 1 247~ 1 250.
  • 8Boser B, Guyon I, Vapnik B. A training algorithm for optimal margin classitiers. In: Fifth Annual Workshop on Computational leaming Theory, Pittsburgh: ACM Press, 1992.
  • 9Cortes C, Vapnik V. Support-vector networks. Machine Learing, 1995,20:273 ~ 297.
  • 10Lecun Y, Jackel L D, Bottou L. Learning algorithms for classification: a comparison on handwritten digit recognition. Neural Networks: The Statistical Mechanics Perspective, World Scientific, 1995. 261 ~ 276.

共引文献76

同被引文献58

引证文献5

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部