期刊文献+

适用于快速暂态稳定计算的新型负荷模型和参数辨识方法 被引量:29

NEW LOAD MODELS FOR FAST TRANSIENT STABILITY CALCULATIONS AND PARAMETER IDENTIFICATION METHOD
在线阅读 下载PDF
导出
摘要 负荷模型在电力系统运行的仿真和评估方面起到重大作用。文中对常规前馈神经网络(BP网络)的学习规则、拓扑结构以及激活函数进行改进后,建立适应性BP(Adaptive Back-Propagation简称ABP)网络模型,并由此提出一种新型负荷模型。ABP能够克服常规BP网络的一些缺点,而且该模型因其非结构性且易收敛而优于传统的负荷模型,这样取得的负荷模型比传统的负荷模型更加精确。通过现场实测数据验证了此模型的有效性。同时,对这种方法在传统负荷模型参数辨识方面进行了研究。在对网络结构进行修改后,提出基于线性BP(Linear Back-Propagation,简称LBP)网络的参数辨识方法。LBP负荷模型可以接入到暂态程序中,从而大大减少计算时间。 Load models play an important role in the simulation and evaluation of power system performance. A new load model is proposed, which is based on a particular form of artificial neural networks that we denote as Adaptive Back-Propagation (ABP) Network after modifying revising learning rules, topology structure, activation and error functions. ABP can overcome some of shortcomings of common Back-Propagation (BP) and the ABP load models offer several advantages over traditional load models as they are non-structural and can be derived quickly. The application of the method is illustrated using actual field test data. Load models obtained are shown to replicate the test measurements more closely than that based on traditional load models. Extension of the method to the identification of parameters of the traditional load models is also proposed. It is based on Linear Back-Propagation (LBP) Network. The proposed LBP load model is incorporated in a transient stability program to show that the computational time is significantly reduced.
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第12期78-85,共8页 Proceedings of the CSEE
关键词 负荷模型 暂态稳定 电力系统 参数辨识 运行 计算时间 快速 学习规则 前馈神经网络 激活函数 Power system Load models Transient stability Artificial neural networks
  • 相关文献

参考文献16

  • 1Kunder P. Power system stability and control[M]. New York: McGraw Hill, 1993.
  • 2Taylor C W. Power system voltage stability[M]. New York: McGraw Hill, 1994.
  • 3贺仁睦.电力系统动态仿真准确度的探究[J].电网技术,2000,24(12):1-4. 被引量:100
  • 4Bibliography on Load Models for Power Flow and Dynamic Performance Simulation[J]. IEEE Task Force on Load Representation for Dynamic Performance, IEEE Trans. on Power Systems, 199510(1): 523-538.
  • 5Borghetti A, Caldon R, Mari A, et al. On dynamic load models for voltage stability studies[J]. IEEE Trans. on Power Systems, 1997,12(1): 293-299.
  • 6Alves da Silva A P, Ferreira C, Zambroni de Souza A C, et al. A new constructive ANN and its application to electric load representation [J]. IEEETrans. on Power Systems, 1997, 12(4): 1569-1575.
  • 7Ku B-Y, Thomas R J, Chio C-Y, et al. Power system dynamic load modeling using artificial neural networks[J]. IEEE Trans. on Power Systems, 1994, 9(4): 1868-1874.
  • 8Bostanci M, Koplowitz J, Taylor C W. Identification of power system load dynamics using artificial neural networks[J]. IEEE Trans. on Power Systems, 1997, 12(4): 1468-1473.
  • 9Ai Qian, Shen Shande, Zhu Shouzhen, et al. Application of neural networks for power generator and excitation system modeling [C]. the 4th APSCOM Conference, Hong Kong, 1997: 151-155.
  • 10谢开贵,李春燕,周家启.基于神经网络的负荷组合预测模型研究[J].中国电机工程学报,2002,22(7):85-89. 被引量:101

二级参考文献23

共引文献297

同被引文献382

引证文献29

二级引证文献480

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部