期刊文献+

适用于励磁系统建模的模糊神经网络方法 被引量:2

A Novel Fuzzy Neural Network Approach for Excitation System Modeling
在线阅读 下载PDF
导出
摘要 基于原有励磁建模方法,将模糊理论和神经网络相结合,充分利用模糊理论处理不精确问题和神经网络较强的泛化能力等优势,形成一种模糊神经网络(FNN),并推导了FNN的学习算法.将此FNN用于发电机的控制环节——励磁系统建模.仿真结果显示,FNN模型能够较精确地对实际系统进行拟合. Precise model plays a vital role in simulation of dynamic process of power systems. By combining the fuzzy theory and neural network technology, a fuzzy neural network (FNN) was proposed, whose learning algorithms are developed by steep algorithm. The excitation system model based on FNN was also derived, which can be used for on-line and off-line analysis and control respectively. The simulation results demonstrate that the FNN model can give precise estimation of practical excitation system.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第S1期5-8,共4页 Journal of Shanghai Jiaotong University
关键词 励磁系统 系统辨识 模糊神经网络 excitation system system identification fuzzy neural network (FNN)
  • 相关文献

参考文献3

二级参考文献18

  • 1沈善德,朱守真,艾芊,陈厚连.用递归神经网络建立同步发电机模型[J].清华大学学报(自然科学版),1997,37(S1):98-101. 被引量:3
  • 2郑君里 杨行俊.人工神经网络[M].北京:高等教育出版社,1982..
  • 3陈厚连.人工神经网络用于电力系统动态建模的研究[博士学位论文].北京:清华大学电机系,1994..
  • 4Ai Q, Aggarwalr, Weller G, et al. An alternative technique for full stator winding protection using artificial intelligence [C]. IASTED International Conference on Power and Energy Systems, Rhodes,Greece, 2001.
  • 5Jiang H, Aggarwal R, weller G, et al. A new aplauach to synchronous generator internal fault simulation using combined winding function theory and direct phase quantities [C]. Ninth International Conference on Electrical Machines and Drives, China, 1996.
  • 6Megahed A I, Malik O P. An artificial neural network based digital differential protection scheme for synchronous generator stator winding protection [J].IEEE Transactions on Power Delivery, 1999,14(1): 86-93.
  • 7Aggarwal R, Joorabian M, Song Y H. Fuzzy neural network approach to accurate transmission line fault location [J]. Engineering Intelligent Systems, 1997, 5(4): 251-258.
  • 8Coury D V, Jorge D C. Artificial neural network approach to distance protection of transmission lines[J]. IEEE Transactions on Power Delivery, 1998, 13(1): 102-108.
  • 9Narendra K G, Sood V K, Khorasani K, etal. Application of a radial basis function (rbf) neural network for fault diagnosis in a hvdc system[J].IEEE Transactions on Power Systems. 1998, 13(1): 177-183.
  • 10Zaman M R, Rahman M A. Experimental testing of the artificial neural network based protection of power transformers[J]. IEEE Transactions on Power Delivery, 1998, 13(2): 510-517.

共引文献9

同被引文献18

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部