期刊文献+

纳米羟基磷灰石/胶原骨在骨折后骨缺损中的应用 被引量:22

The Application of Nano-hydroxyapatite/collagen in Bone Defects Caused by Fracture
在线阅读 下载PDF
导出
摘要 目的 :评估纳米羟基磷灰石 /胶原骨 (nano hydroxyapatite/collagen ,NHAC ,简称人工骨 )材料在骨折后骨缺损应用中的临床效果。方法 :对 2 1例骨折后骨缺损患者应用NHAC骨修复材料进行手术植入治疗 ,连续 6~ 13个月临床观察随访。结果 :2 1例中 2例失访。获随访的 19例患者无局部或全身不良反应。 19例中 2例因外伤或过早负重 ,致内固定钢板折断再骨折 ,予重新手术内固定 ,其余 17例均达临床愈合。X线片显示 ,术后 1~ 3个月材料植入区与缺损周围的骨组织间界限模糊有新骨形成 ,3~ 6个月材料植入区内有明显的新骨长入 ,骨修复材料与骨组织融合一体 ,达到骨性连接 ,骨缺损己基本修复。 6~ 12个月植骨塑形改建。结论 :NHAC骨修复材料具有良好的生物相容性和骨传导性 ;其良好的材料 -细胞界面使材料本身便具备与骨键合的能力 ;其三维多孔结构便于骨组织的长入 ;其生物降解性有利于骨组织的改建和塑形 ,具有良好的临床应用前景。 Objective:To evaluate the clinical results of nano-hydroxyapatite/collagen(NHAC) as a bone graft substitute in repair of bone defects. Methods:Twenty one patients were treated with a bone graft substitute,NHAC for bone defects caused by fracture. Implantation amount was decided by extent of bone defects,averaging from 0.4 to 2 grams. Clinical and roentgenographic assessments were performed consecutively at follow-up periods of 6 to 13 months. Results:The results of 19 cases were obtained. No adverse reactions to the graft materials were found in all patients. Among the 19 cases,two cases were re-fracture and with broken fixator,the reason was the early removal of the external fixator,and they didn’t heal. The other 17 cases got clinical healing,and the healing time averaged from 3 to 6 months after operation. The interface between normal bone and grafted defect became vague in advance of new bone formation by 1 to 3 months roentgenographically,and obliteration of the interface was evident at 3 to 6 months. Conclusion:NHAC had good biocompatibility and biodegradability. It was a safe,effective bone graft substitute material for the filling of defects caused by trauma.
出处 《江苏大学学报(医学版)》 CAS 2004年第4期292-294,共3页 Journal of Jiangsu University:Medicine Edition
关键词 纳米羟基磷灰石 胶原 骨折 缺损 Nano-hydroxyapatite Collagen fracture Defect
  • 相关文献

参考文献9

二级参考文献26

  • 1张汉东,孙迎曙,宋炜,陈穗,曾久荷,郭远龙,钱世玲,舒江桥.磷酸三钙生物陶瓷骨内植入的研究[J].中华口腔医学杂志,1994,29(5):296-298. 被引量:4
  • 2[1]Lu HB, Ma CL, Cui H, et al. Controlled crystallization of calcium phosphate under stearic acid monolayer. J Crystal Growth, 1995, 155:120
  • 3[2]Cui FZ, Zhou LF, Cui H, et al. Phase diagram for controlled crystallization of calcium phosphate under acidic organic monolayers. J Crystal Growth, 1996, 169:557
  • 4[3]Amprino R. Investigations on some physical properties of bone tissue. Acta Anat, 1958, 34:161-186
  • 5[4]Evans GP, Behiri JC, Currey JD, et al. Microhardness and Young's modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue. J Mater Sci Mater Med, 1990, 1:38-43
  • 6[5]Gross U, Strunz V. The interface of various glasses and glass-ceramics with a bony implantation bed. J Biomed Mater Res, 1985, 19:251-271
  • 7[6]Neo M, Nakamura T, Ohtsuki C, et al. Apatite formation on three kinds of bioactive material at an early stage in vivo: A comparative study by transmission electron microscopy. J Biomed Mater Res, 1993, 27:999-1006
  • 8[7]Osborn JF, Newesly H. Bonding osteogenesis induced by calcium phosphate ceramic implants. In: Winter GD,Gibbons DF, Plenk H. Biomaterials. Sussex: John Wiley and Sons, 1982.55-58
  • 9[8]Daculsi G, LeGeros RZ, Mitre D. Crystal dissolution of biological and ceramic apatites. Calcif Tissue Int, 1989, 45: 95-103
  • 10[1]Stock OA, Vacanti JP. Tissue Engineering:current state and prospects. Annu Rev Med, 2001, 52:443-451

共引文献259

同被引文献283

引证文献22

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部