期刊文献+

基于新的描述湍流耗散方程的k-ζ两方程湍流模型的数值算法研究 被引量:6

Applying Robinson's New Two-Equation Turbulence k-(?) Model to Numerically Simulating Turbulent Flow
在线阅读 下载PDF
导出
摘要 对Navier-Stokes方程进行雷诺平均后出现的各关联项建模,通过新的描述湍流脉动耗散的变量构造耗散方程,建立k-ζ两方程湍流模型,研究了k-ζ两方程湍流模型的数值求解方法。通过求解有限体积法离散的RANS流动控制方程,数值模拟了平板,翼型,机翼等不同湍流流场,并与理论解、实验值及SSTk-ω模型进行比较,全面考察了k-ζ两方程湍流模型在湍流流场计算中的准确性及适用性。数值计算表明,通过建立新的耗散方程研究湍流的方法是可行的,目前的k-ζ两方程湍流模型具有良好的数值稳定性,并且计算结果要优于或者至少与传统的两方程模型精度相当。 Aim.D.B.Robinson applied his new turbulence k-ξmodel in Refs.2,4 and 5.Having searched unsuccessfully for technical details,we explain how we think his new model should be applied to simulating turbulent flow and then we discuss the results obtained.Sections 2 and 3 of the full paper explain how his new model should be applied;eq.(4) in section 2 and eq.(10) in section 3 are the most important.Section 4 gives four numerical examples.The first example is flat plate,for which the theoretical solution is avail...
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2009年第4期466-470,共5页 Journal of Northwestern Polytechnical University
关键词 NAVIER-STOKES方程 雷诺平均 k-ζ两方程湍流模型 turbulent flow computer simulation two-equation turbulence model k-ξmodel Menter's SST k-ωmodel
  • 相关文献

参考文献8

  • 1Robinson D F,Hassan H A.A Two-Equation Turbulence Closure Model for Wall Bounded and Free Shear Layers. AIAA-96-2057 .
  • 2Alexopoulos G A,Hassan H A.A k-ξ (Enstrophy) Compressible Turbulence Model for Mixing Layers and Wall Bounded Flows. AIAA-96-2309 .
  • 3Robinson D F,Hassan H A.Modeling of Separated Turbulent Flows. AIAA- 97-0207 .
  • 4Robinson D F,Hassan H A.Modeling Turbulence without Damping Functions Using k-ξModel. AIAA-97-2312 .
  • 5Robinson D F,Hassan H A.Further Development of the k-ξ (Enstrophy) Turbulence Closure Model[].AIAA Journal.1998
  • 6Pulliam T H,Chaussee D S.A diagonal form of an implicit approximate-factorization algorithm[].Journal of Computational Physics.1981
  • 7White FM.Viscous Fluid Flow[]..1974
  • 8Wilcox. D.C.Turbulence Modeling for CFD[]..1993

同被引文献46

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部