期刊文献+

基于分布式数据库的关联规则挖掘算法 被引量:4

An Algorithm for Mining Association Rules in Distributed Database
在线阅读 下载PDF
导出
摘要 现有的数据挖掘算法和模型主要是基于大型数据库或数据仓库的环境,大多采用集中式处理.而目前绝大部分的大型数据库都是以分布式的形式存在的,因此.提出新的分布式关联规则挖掘算法是非常必要的.针对FDM 算法中可能造成频繁项集丢失的缺点,提出了一种改进的分布式关联规则挖掘算法 DARM,该算法同时也减少了各分站点问的通讯量.从而提高了整个挖掘算法的效率. At present,the data mining algorithms and models that are mainly based on large databases or data warehouse environment are centralized processing.However,as many databases are distributed,it is necessary to present a new algorithm of distributed association rules mining.In the paper,an improved algorithm DRAM is proposed to overcome the shortcoming of FDM algorithm that may lose frequent item- sets,reduce the communication consuming among the sites,and improve the efficiency of the entire mining algorithm.
出处 《湛江师范学院学报》 2007年第6期74-77,共4页 Journal of Zhanjiang Normal College
关键词 分布式数据挖掘 频繁项集 关联规则 distributed data mining frequent itemset association rules apriori algorithm
  • 相关文献

参考文献4

二级参考文献17

  • 1张惠民,王晓卫,肖庆.数据库中关联规则的并行/分布式采掘技术[J].装甲兵工程学院学报,2003,17(2):38-41. 被引量:1
  • 2Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C].In :Proc ACM SIGMOD Int Conf Management of Date.Washington D C,1993:207-216.
  • 3Han J Kamber.MData Mining:Concepts and Techniques[M].Beijing: High Education Press,2001.
  • 4Goethals B.Survey on frequent pattern mining[R].Helsinki Institute for information Technology ,Technical report, 2003.
  • 5Park J S,Chen M S,Yu P S.Efficient parallel data mining for association rules[C].In:Proceedings of the 4th International Conference on Information and Knowledge Management, Baltimore. Maryland, 1995:31-36.
  • 6Agrawal R,Shafer J C.Parallel mining of association rules[J].IEEE Transactions on Knowledge and Data Engineering,1996;8(6):962-969.
  • 7Cheung D W,Han J W,Ng V T et al.A fast distributed algorithm for mining association rules[C].In:Proceedings of IEEE 4th International Conference Parallel and Distributed Information Systems,Miami Beach, Florida, 1996 : 31 -44.
  • 8Cheung David W,Ng Vincent T,Fu Ada W.Efficient Mining of Association Rules in Distributed Databases[J].IEEE Transactions On Knowledge And Data Engineering, 1996 ; 8 (6) : 911 -922.
  • 9Cheung D W,Lee S D,Xiao Y Q.Effect of Data Skewness and Workload Balance in Parallel Data Mining[J].IEEE Transactions on Knowledge and Data Engineering.2002;14(3):498-514.
  • 10Schuster A ,Wolff R.Communication efficient distributed mining of association rules[C].In:Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data,Santa Barbara,California, 2001:473-484.

共引文献21

同被引文献25

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部