摘要
Ti O2纳米管阵列较大的禁带宽度是导致其光催化效率较低的重要原因,采用磁控溅射、阳极氧化以及气氛退火相结合的方法对TNAs改性后制备了Au负载N掺杂Ti O2纳米管阵列(Au@N-TNAs),然后以甲基橙为目标污染物,进一步分析了Au@N-TNAs在不同Au负载量时光降解效率的变化情况。采用SEM、XRD、TEM和X射线光电子能谱(XPS)等对Au和N在Au@N-TNAs中的存在形式进行表征和分析,发现Au主要是负载在Ti O2纳米管阵列上,而N元素则是以掺杂的方式进入Ti O2纳米管阵列的晶格中。此外,在光降解试验中发现通过Au负载与N掺杂相结合的方法对Ti O2纳米管阵列进行复合改性后,TiO2纳米管阵列的光催化效率得到显著提升,其中20s-Au@N-TNAs具有最佳的光降解效率。但Ti-N薄膜中间的Au层太厚时会影响阳极氧化过程中Ti O2纳米管阵列的生长,而且过量的Au在退火处理时很难及时地扩散均匀,进而使得改性后的Ti O2纳米管阵列(40s-Au@N-TNAs)的光催化效率明显降低。
The low photocatalytic efficiency of Ti O2 nanotube arrays is mainly due to its large band gap,in this paper,Au-supported N-doped Ti O2 nanotube arrays(Au@N-TNAs)were prepared by modifying TNAs by a combination of magnetron sputtering,anodizing,and atmospheric annealing,then methyl orange was used as the target pollutant to analyse the photodegradation efficiency of Au@N-TNAs under different Au loading.SEM,XRD,TEM,and X-ray photoelectron spectroscopy(XPS)were used to characterize the existence of Au and N in Au@N-TNAs.According to the analysis,Au was mainly supported on Ti O2 nanotubes arrays,and N was doped into the lattice of Ti O2 nanotubes arrays.In addition,it was found that the composite modification of the Ti O2 nanotube arrays by a combination of Au loading and N doping in this photodegradation experiment,then the photocatalytic efficiency of the modified Ti O2 nanotube arrays were significantly improved,and 20 s-Au@N-TNAs had the best photodegradation efficiency.However,when the Au layer in the middle of the Ti-N thin film was too thick,it would affect the growth of Ti O2 nanotubes arrays during anodization,and the excessive Au was difficult to diffuse uniformly in time during the annealing treatment,there-by making the photocatalytic efficiency of the modified Ti O2 nanotube arrays(40 s-Au@N-TNAs)were significantly reduced.
作者
许美贤
刘佳孟
李文奕
孙研豪
张王刚
王红霞
XU Meixian;LIU Jiameng;LI Wenyi;SUN Yanhao;ZHANG Wanggang;WANG Hongxia(College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,Taiyuan 030024,China)
出处
《中国表面工程》
EI
CAS
CSCD
北大核心
2020年第1期84-90,共7页
China Surface Engineering
基金
国家自然科学基金(U1810208)
山西省自然科学基金(201701D121045)