Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int...Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.展开更多
BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are ne...BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.展开更多
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ...Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.展开更多
This paper introduces an intelligent garbage-handling trolley model based on an STM32 single chip microcomputer as the control core.The device is driven by four independent motors to achieve automatic tracking,automat...This paper introduces an intelligent garbage-handling trolley model based on an STM32 single chip microcomputer as the control core.The device is driven by four independent motors to achieve automatic tracking,automatic obstacle avoidance,and fixed-point docking.Using external execution structure to realize the car without the use of a mechanical arm,complete garbage collection,storage,and uninstall function.On this basis,the type of garbage is marked by color,and the color recognition sensor is applied to realize the type recognition after garbage collection and put into the corresponding unloading point,to realize its intelligent classification function.It can automatically complete the established task autonomously.展开更多
THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to pos...THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to possess a physical“body”to transition from the virtual world to the real world and evolve through interaction with the real environments.In this context,“embodied intelligence”has sparked a new wave of research and technology,leading AI beyond the digital realm into a new paradigm that can actively act and perceive in a physical environment through tangible entities such as robots and automated devices[5].展开更多
The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique re...The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.展开更多
During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model...During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.展开更多
Accurately estimating the State of Health(SOH)of batteries is of great significance for the stable operation and safety of lithiumbatteries.This article proposes amethod based on the combination of Capacity Incrementa...Accurately estimating the State of Health(SOH)of batteries is of great significance for the stable operation and safety of lithiumbatteries.This article proposes amethod based on the combination of Capacity Incremental Curve Analysis(ICA)andWhale Optimization Algorithm-Radial Basis Function(WOA-RBF)neural network algorithm to address the issues of low accuracy and slow convergence speed in estimating State of Health of batteries.Firstly,preprocess the battery data to obtain the real battery SOH curve and Capacity-Voltage(Q-V)curve,convert the Q-V curve into an IC curve and denoise it,analyze the parameters in the IC curve that may serve as health features;Then,extract the constant current charging time of the battery and the horizontal and vertical coordinates of the two IC peaks as health features,and perform correlation analysis using Pearson correlation coefficient method;Finally,theWOA-RBF algorithmwas used to estimate the battery SOH,and the training results of LSTM,RBF,and PSO-RBF algorithms were compared.The conclusion was drawn that theWOA-RBF algorithm has high accuracy,fast convergence speed,and the best linearity in estimating SOH.The absolute error of its SOHestimation can be controlled within 1%,and the relative error can be controlled within 2%.展开更多
Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional metho...Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.展开更多
Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.Th...Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.展开更多
We propose an approach for recognizing the pose and surface material of diverse objects,leveraging diffuse reflection principles and data fusion.Through theoretical analysis and the derivation of factors influencing d...We propose an approach for recognizing the pose and surface material of diverse objects,leveraging diffuse reflection principles and data fusion.Through theoretical analysis and the derivation of factors influencing diffuse reflection on objects,the method concentrates on and exploits surface information.To validate the feasibility of our theoretical research,the depth and active infrared intensity data obtained from a single time-of-flight camera are initially combined.Subsequently,these data undergo processing using feature extraction and lightweight machine-learning techniques.In addition,an optimization method is introduced to enhance the fitting of intensity.The experimental results not only visually showcase the effectiveness of our proposed method in accurately detecting the positions and surface materials of targets with varying sizes and spatial locations but also reveal that the vast majority of the sample data can achieve a recognition accuracy of 94.8%or higher.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
Auroral Kilometric Radiation (AKR) is a common radio emission,which can contribute to the magnetosphere-ionosphereatmosphere co u pling.Similar emissions have been observed in all magnetic planet magnetospheres of the...Auroral Kilometric Radiation (AKR) is a common radio emission,which can contribute to the magnetosphere-ionosphereatmosphere co u pling.Similar emissions have been observed in all magnetic planet magnetospheres of the solar system.In this study,using observations from the FAST satellite from 30 August 1996 to 9 September 2001,the distribution of AKR in altitude=500-4500 km and invariant latitude (|ILAT|)=60°-80°has been analyzed.63045 AKR samples have been identified with~48%(52%) samples on the dayside (nightside).Of considerable interest,there is a distinct MLT asymmetry with the high occurrence rate in MLT=05-08 and 18-22(02-05 and 12-17) in the northern (southern) hemisphere.The distinct MLT asymmetry is associated with the direction of Bxof the interplaneta ry magnetic field.In addition,the occurrence rate on the nightside clearly increases as the AE^(*) index increases.This study further enriches the information and understanding of AKR in the magnetosphere as well as other similar radio emissions.展开更多
Dissolved oxygen(DO)content is an important index of river water quality.Water quality sensors have been used in China for urban river water monitoring and DO content prediction.However,water quality sensors are expen...Dissolved oxygen(DO)content is an important index of river water quality.Water quality sensors have been used in China for urban river water monitoring and DO content prediction.However,water quality sensors are expensive and difficult to maintain,and have a short operation period and difficult to maintain.This study developed a scientific and accurate method for prediction of DO content changes using fish school features.The behavioral features of the Carassius auratus fish school were described using two-dimensional fish school images.The degree of DO content decline was graded into five levels,and the corresponding numerical ranges of cluster characteristic parameters were determined by considering the opinions of ichthyologists.Finally,the variation of DO content was predicted using the characteristic parameters of the fish school and the multiple-input single-output Takagi-Sugeno fuzzy neural network.The prediction results were basically consistent with the actual variations of DO content.Therefore,it is feasible to use the behavioral features of the fish school to dynamically predict the level of DO content in water,and this method is especially suitable for prediction of sharp decline of DO content in a relatively short time.展开更多
Wire electrical explosion may result in the existence of micro-sized large particles in powders while current injection ways may influence the size and content of micro-sized large particles. Therefore, two kinds of e...Wire electrical explosion may result in the existence of micro-sized large particles in powders while current injection ways may influence the size and content of micro-sized large particles. Therefore, two kinds of electrical explosion devices with different electrodes by gas discharge were designed in this paper. The pole-board electrodes and the cone electrodes were used respectively for studying copper wire electrical explosion process. The current and voltage data were measured with the Rogowski coil and high voltage probe. The results show that the pulverizing process of electrical explosion is more efficient when the wire electrode current density injected into the cone electrodes is approximately twice as much as the pole-board electrodes. The content of micro-sized large particles is the least among the products of the electrical explosion, when the total deposition energy of the wire prior to vaporization stage is 2. 5 times larger than that of the theoretical value of the completed vaporization.展开更多
Exploring the human brain is perhaps the most challenging and fascinating scientific issue in the 21st century.It will facilitate the development of various aspects of the society,including economics,education,health ...Exploring the human brain is perhaps the most challenging and fascinating scientific issue in the 21st century.It will facilitate the development of various aspects of the society,including economics,education,health care,national defense and daily life.The artificial intelligence techniques are becoming useful as an alternate method of classical techniques or as a component of an integrated system.They are used to solve complicated problems in various fields and becoming increasingly popular nowadays.Especially,the investigation of human brain will promote the artificial intelligence techniques,utilizing the accumulating knowledge of neuroscience,brain-machine interface techniques,algorithms of spiking neural networks and neuromorphic supercomputers.Consequently,we provide a comprehensive survey of the research and motivations for brain-inspired artificial intelligence and its engineering over its history.The goals of this work are to provide a brief review of the research associated with brain-inspired artificial intelligence and its related engineering techniques,and to motivate further work by elucidating challenges in the field where new researches are required.展开更多
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s...For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.展开更多
By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in dis...By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.展开更多
The dynamical behaviours of valley current controlled buck converter are studied by establishing its corresponding discrete iterative map model in this paper. Time-domain waveforms and phase portraits of valley curren...The dynamical behaviours of valley current controlled buck converter are studied by establishing its corresponding discrete iterative map model in this paper. Time-domain waveforms and phase portraits of valley current controlled buck converter are obtained by Runge-Kutta algorithm through a piecewise smooth switching model. The research results indicate that the valley current controlled buck converter exhibits rich nonlinear phenomena, and it has routes to chaos through period-doubling bifurcation and border-collision bifurcation in a wide parameter range. Interesting inverse nonlinear behaviours compared with peak current controlled buck converter are observed in the valley current controlled buck converter. Analysis and simulation results are verified by experimental results.展开更多
Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)...Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)O_(3) as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance.The FeSiAl@ZnO@Al_(2)O_(3) layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique.Owing to the unique hybrid structure,the FeSiAl@ZnO@Al_(2)O_(3) exhibits record-high micro-wave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss(RLmin)of-50.6 dB at 3.4 GHz.Compared with pure FeSiAl(RLmin of-13.5 dB,a bandwidth of 0.5 GHz),the RLmin value and effective bandwidth of this designed novel absorber increased up to~3.7 and~3 times,respectively.Fur-thermore,the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit.This is attributed to the large charge transfer resistance,increased impedance modulus|Z|0.01 Hz,and frequency time constant of FeSiAl@ZnO@Al_(2)O_(3).The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.展开更多
基金funded by the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture under Grant GJZJ20220802。
文摘Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.
基金Supported by the 2022 Provincial Quality Engineering Project for Higher Education Institutions,No.2022sx031the 2023 Provincial Quality Engineering Project for Higher Education Institutions,No.2023jyxm1071.
文摘BACKGROUND Inguinal hernias are common after surgery.Tension-free repair is widely accepted as the main method for managing inguinal hernias.Adequate exposure,coverage,and repair of the myopectineal orifice(MPO)are necessary.However,due to differences in race and sex,people’s body shapes vary.According to European guidelines,the patch should measure 10 cm×15 cm.If any part of the MPO is dissected,injury to the nerves,vascular network,or organs may occur during surgery,thereby leading to inguinal discomfort,pain,and seroma formation after surgery.Therefore,accurate localization and measurement of the boundary of the MPO are crucial for selecting the optimal patch for inguinal hernia repair.AIM To compare the size of the MPO measured on three-dimensional multislice spiral computed tomography(CT)with that measured via laparoscopy and explore the relevant factors influencing the size of the MPO.METHODS Clinical data from 74 patients who underwent laparoscopic tension-free inguinal hernia repair at the General Surgery Department of the First Affiliated Hospital of Anhui University of Science and Technology between September 2022 and July 2024 were collected and analyzed retrospectively.Transabdominal preperitoneal was performed.Sixty-four males and 10 females,with an average age of 58.30±12.32 years,were included.The clinical data of the patients were collected.The boundary of the MPO was measured on three-dimensional CT images before surgery and then again during transabdominal preperitoneal.All the preoperative and intraoperative data were analyzed via paired t-tests.A t-test was used for comparisons of age,body mass index,and sex between the groups.In the comparative analysis,a P value less than 0.05 indicated a significant difference.RESULTS The boundaries of the MPO on 3-dimensional CT images measured 7.05±0.47 cm and 6.27±0.61 cm,and the area of the MPO was 19.54±3.33 cm^(2).The boundaries of the MPO during surgery were 7.18±0.51 cm and 6.17±0.40 cm.The errors were not statistically significant.However,the intraoperative BD(the width of the MPO,P=0.024,P<0.05)and preoperative AC(the length of the MPO,P=0.045,P<0.05)significantly differed according to sex.The AC and BD measurements before and during surgery were not significantly different according to age,body mass index,hernia side or hernia type(P>0.05).CONCLUSION The application of this technology can aid in determining the most appropriate dissection range and patch size.
基金supported by the Changzhou Science and Technology Support Project(CE20235045)Open Subject of Jiangsu Province Key Laboratory of Power Transmission and Distribution(2021JSSPD12)+1 种基金Talent Projects of Jiangsu University of Technology(KYY20018)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633).
文摘Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.
文摘This paper introduces an intelligent garbage-handling trolley model based on an STM32 single chip microcomputer as the control core.The device is driven by four independent motors to achieve automatic tracking,automatic obstacle avoidance,and fixed-point docking.Using external execution structure to realize the car without the use of a mechanical arm,complete garbage collection,storage,and uninstall function.On this basis,the type of garbage is marked by color,and the color recognition sensor is applied to realize the type recognition after garbage collection and put into the corresponding unloading point,to realize its intelligent classification function.It can automatically complete the established task autonomously.
基金supported by the National Natural Science Foundation of China(62302047,62203250)the Science and Technology Development Fund of Macao SAR(0093/2023/RIA2,0050/2020/A1).
文摘THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to possess a physical“body”to transition from the virtual world to the real world and evolve through interaction with the real environments.In this context,“embodied intelligence”has sparked a new wave of research and technology,leading AI beyond the digital realm into a new paradigm that can actively act and perceive in a physical environment through tangible entities such as robots and automated devices[5].
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104414,12122412,12104464,and 12104413)the China Postdoctoral Science Foundation(Grant No.2021M702955).
文摘The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms.
基金National Natural Science Foundation of China(Nos.51767017,51867015,62063016)Fundamental Research Innovation Group Project of Gansu Province(18JR3RA133)Gansu Provincial Science and Technology Program(20JR5RA048,20JR10RA177).
文摘During the operation of a DC microgrid,the nonlinearity and low damping characteristics of the DC bus make it prone to oscillatory instability.In this paper,we first establish a discrete nonlinear system dynamic model of a DC microgrid,study the effects of the converter sag coefficient,input voltage,and load resistance on the microgrid stability,and reveal the oscillation mechanism of a DC microgrid caused by a single source.Then,a DC microgrid stability analysis method based on the combination of bifurcation and strobe is used to analyze how the aforementioned parameters influence the oscillation characteristics of the system.Finally,the stability region of the system is obtained by the Jacobi matrix eigenvalue method.Grid simulation verifies the feasibility and effectiveness of the proposed method.
基金funded by the Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province,grant number 22KJD470002.
文摘Accurately estimating the State of Health(SOH)of batteries is of great significance for the stable operation and safety of lithiumbatteries.This article proposes amethod based on the combination of Capacity Incremental Curve Analysis(ICA)andWhale Optimization Algorithm-Radial Basis Function(WOA-RBF)neural network algorithm to address the issues of low accuracy and slow convergence speed in estimating State of Health of batteries.Firstly,preprocess the battery data to obtain the real battery SOH curve and Capacity-Voltage(Q-V)curve,convert the Q-V curve into an IC curve and denoise it,analyze the parameters in the IC curve that may serve as health features;Then,extract the constant current charging time of the battery and the horizontal and vertical coordinates of the two IC peaks as health features,and perform correlation analysis using Pearson correlation coefficient method;Finally,theWOA-RBF algorithmwas used to estimate the battery SOH,and the training results of LSTM,RBF,and PSO-RBF algorithms were compared.The conclusion was drawn that theWOA-RBF algorithm has high accuracy,fast convergence speed,and the best linearity in estimating SOH.The absolute error of its SOHestimation can be controlled within 1%,and the relative error can be controlled within 2%.
基金Sponsored by the National Science and Technology Innovation Fund for Small and Medium Enterprises(Grant No.10C26211200144)Tianjin Science and Technology Key Supporting Projects(Grant No.10ZCGYGX18300)
文摘Visible Light Communication( VLC) based on LED is a new wireless communication technology with high response rate and good modulation characteristics in the wavelengths of 380- 780 nm. Compared with conventional methods,the waveband of VLC is harmless to human and safe to communication because of no magnetism radiation. An audio information transmission system using LED traffic lights is presented based on VLC technology. The system is consisted of transmitting terminal,receiving terminal and communication channel. Some experiments were made under real communication environment. The experimental results showed that the traffic information transmission system works steadily with good communication quality and achieves the purpose of transmitting audio information through LED traffic lights,with a data transfer rate up to 250 kbps over a distance of 5 meters.
文摘Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.
基金supported by the Shaanxi Province Innovation Talent Promotion Program-Science and Technology Innovation Team(Grant No.2023-CX-TD-03).
文摘We propose an approach for recognizing the pose and surface material of diverse objects,leveraging diffuse reflection principles and data fusion.Through theoretical analysis and the derivation of factors influencing diffuse reflection on objects,the method concentrates on and exploits surface information.To validate the feasibility of our theoretical research,the depth and active infrared intensity data obtained from a single time-of-flight camera are initially combined.Subsequently,these data undergo processing using feature extraction and lightweight machine-learning techniques.In addition,an optimization method is introduced to enhance the fitting of intensity.The experimental results not only visually showcase the effectiveness of our proposed method in accurately detecting the positions and surface materials of targets with varying sizes and spatial locations but also reveal that the vast majority of the sample data can achieve a recognition accuracy of 94.8%or higher.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金supported by the National Natural Science Foundation of China grants 42230209,42374215,42304183,72342001,71931003 and 72061147004the Scientific Research Fund of Hunan Provincial Education Department grants 21A0212the Science and Technology Innovation Program of Hunan Province under Grants 2022RC4025,2023JJ50312,2023JJ50010.
文摘Auroral Kilometric Radiation (AKR) is a common radio emission,which can contribute to the magnetosphere-ionosphereatmosphere co u pling.Similar emissions have been observed in all magnetic planet magnetospheres of the solar system.In this study,using observations from the FAST satellite from 30 August 1996 to 9 September 2001,the distribution of AKR in altitude=500-4500 km and invariant latitude (|ILAT|)=60°-80°has been analyzed.63045 AKR samples have been identified with~48%(52%) samples on the dayside (nightside).Of considerable interest,there is a distinct MLT asymmetry with the high occurrence rate in MLT=05-08 and 18-22(02-05 and 12-17) in the northern (southern) hemisphere.The distinct MLT asymmetry is associated with the direction of Bxof the interplaneta ry magnetic field.In addition,the occurrence rate on the nightside clearly increases as the AE^(*) index increases.This study further enriches the information and understanding of AKR in the magnetosphere as well as other similar radio emissions.
基金supported by the Natural Science Foundation of Changzhou City,China(Grants No.CE20195026 and CE20205031)the Teaching Steering Committee of Electronics Information Specialty in Colleges and Universities of the Ministry of Education(Grant No.2020-YB-42)the Jiangsu Overseas Visiting Scholar Program for University Prominent Young and Middle Aged Teachers and Presidents.
文摘Dissolved oxygen(DO)content is an important index of river water quality.Water quality sensors have been used in China for urban river water monitoring and DO content prediction.However,water quality sensors are expensive and difficult to maintain,and have a short operation period and difficult to maintain.This study developed a scientific and accurate method for prediction of DO content changes using fish school features.The behavioral features of the Carassius auratus fish school were described using two-dimensional fish school images.The degree of DO content decline was graded into five levels,and the corresponding numerical ranges of cluster characteristic parameters were determined by considering the opinions of ichthyologists.Finally,the variation of DO content was predicted using the characteristic parameters of the fish school and the multiple-input single-output Takagi-Sugeno fuzzy neural network.The prediction results were basically consistent with the actual variations of DO content.Therefore,it is feasible to use the behavioral features of the fish school to dynamically predict the level of DO content in water,and this method is especially suitable for prediction of sharp decline of DO content in a relatively short time.
基金This research was supported by National Natural Science Foundation of China (No. 51061011 ).
文摘Wire electrical explosion may result in the existence of micro-sized large particles in powders while current injection ways may influence the size and content of micro-sized large particles. Therefore, two kinds of electrical explosion devices with different electrodes by gas discharge were designed in this paper. The pole-board electrodes and the cone electrodes were used respectively for studying copper wire electrical explosion process. The current and voltage data were measured with the Rogowski coil and high voltage probe. The results show that the pulverizing process of electrical explosion is more efficient when the wire electrode current density injected into the cone electrodes is approximately twice as much as the pole-board electrodes. The content of micro-sized large particles is the least among the products of the electrical explosion, when the total deposition energy of the wire prior to vaporization stage is 2. 5 times larger than that of the theoretical value of the completed vaporization.
文摘Exploring the human brain is perhaps the most challenging and fascinating scientific issue in the 21st century.It will facilitate the development of various aspects of the society,including economics,education,health care,national defense and daily life.The artificial intelligence techniques are becoming useful as an alternate method of classical techniques or as a component of an integrated system.They are used to solve complicated problems in various fields and becoming increasingly popular nowadays.Especially,the investigation of human brain will promote the artificial intelligence techniques,utilizing the accumulating knowledge of neuroscience,brain-machine interface techniques,algorithms of spiking neural networks and neuromorphic supercomputers.Consequently,we provide a comprehensive survey of the research and motivations for brain-inspired artificial intelligence and its engineering over its history.The goals of this work are to provide a brief review of the research associated with brain-inspired artificial intelligence and its related engineering techniques,and to motivate further work by elucidating challenges in the field where new researches are required.
基金supported in part by the National Natural Science Foundation of China under Grand No.61871129 and No.61301179Projects of Science and Technology Plan Guangdong Province under Grand No.2014A010101284
文摘For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.
基金Project supported by the National Natural Science Foundations of China (Grant Nos 50677056 and 60472059)
文摘By establishing the discrete iterative mapping model of a current mode controlled buck-boost converter, this paper studies the mechanism of mode shift and stability control of the buck-boost converter operating in discontinuous conduction mode with a ramp compensation current. With the bifurcation diagrazn, Lyapunov exponent spectrum, time- domain waveform and parameter space map, the performance of the buck-boost converter circuit utilizing a compensating ramp current has been analysed. The obtained results indicate that the system trajectory is weakly chaotic and strongly intermittent under discontinuous conduction mode. By using ramp compensation, the buck-boost converter can shift from discontinuous conduction mode to continuous conduction mode, and effectively operates in the stable period-one region.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50677056)the Doctoral Innovation Foundation of Southwest Jiaotong University of China+1 种基金the Cultivation Project of Excellent Doctorate Dissertation of Southwest Jiaotong University of Chinathe Natural Science Foundations of Jiangsu Province,China (Grant No. BK2009105)
文摘The dynamical behaviours of valley current controlled buck converter are studied by establishing its corresponding discrete iterative map model in this paper. Time-domain waveforms and phase portraits of valley current controlled buck converter are obtained by Runge-Kutta algorithm through a piecewise smooth switching model. The research results indicate that the valley current controlled buck converter exhibits rich nonlinear phenomena, and it has routes to chaos through period-doubling bifurcation and border-collision bifurcation in a wide parameter range. Interesting inverse nonlinear behaviours compared with peak current controlled buck converter are observed in the valley current controlled buck converter. Analysis and simulation results are verified by experimental results.
基金financially supported by the National Natural Science Foundation of China(No.51972045,5197021414)the Fundamental Research Funds for the Chinese Central Universities,China(No.ZYGX2019J025)+4 种基金Sichuan Science and Technology Program(No.2020JDRC0015 and No.2020JDRC0045)Sichuan Science and Technology Innovation Talent Project(No.2021JDRC0021)the Vice-Chancellor fellowship scheme at RMIT Universitythe RMIT Micro Nano Research Facility(MNRF)in the Victorian node of the Australian National Fabrication Facility(ANFF)the RMIT Microscopy and Microanalysis Facility(RMMF)to support this work。
文摘Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)O_(3) as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance.The FeSiAl@ZnO@Al_(2)O_(3) layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique.Owing to the unique hybrid structure,the FeSiAl@ZnO@Al_(2)O_(3) exhibits record-high micro-wave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss(RLmin)of-50.6 dB at 3.4 GHz.Compared with pure FeSiAl(RLmin of-13.5 dB,a bandwidth of 0.5 GHz),the RLmin value and effective bandwidth of this designed novel absorber increased up to~3.7 and~3 times,respectively.Fur-thermore,the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit.This is attributed to the large charge transfer resistance,increased impedance modulus|Z|0.01 Hz,and frequency time constant of FeSiAl@ZnO@Al_(2)O_(3).The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.