Thermax 700 thermo gravimetric analysis (TGA) instrument is introduced for the investigation of the reaction and deactivation kinetics of Methanol-to-Olefins (MTO) process with SAPO-34 catalyst.By the use of a spe...Thermax 700 thermo gravimetric analysis (TGA) instrument is introduced for the investigation of the reaction and deactivation kinetics of Methanol-to-Olefins (MTO) process with SAPO-34 catalyst.By the use of a special sample basket,the TGA instrument can be viewed as a plug flow fixed-bed reactor,while the weight change of SAPO-34 during reaction can be recorded online.Kinetic data are acquired in the temperature range of 648.2?748.2 K and space velocities of 7.08?35.91 h^-1 (WHSV).Catalyst activity is expressed with average coke content,and selectivity for different products is related as a function of coke content and temperature.Methane is also introduced into the lumping kinetic model,and power exponent function with first-order reaction is adopted for model deduction.Exponential function is tested to give the best fit for catalyst activity and product selectivity with the highest correlation coefficient.The nicely agreed results between experimental and calculated data suggest that the overall kinetic model would be meaningful in both product distribution prediction and reactor simulation.展开更多
For the Fischer-Tropsch synthesis (FrS), this paper presents a numerical investigation in a 3D fiuidized bed reactor. The effect of the operation parameters such as bed temperature, superficial gas velocities, parti...For the Fischer-Tropsch synthesis (FrS), this paper presents a numerical investigation in a 3D fiuidized bed reactor. The effect of the operation parameters such as bed temperature, superficial gas velocities, particle size and bed heights is discussed. A 3D-CFD model coupled with FTS chemical kinetics was set up. The computational resuits are compared with experimental data in terms of the components production rates, etc. The analysis shows that the bed heights, the bed temperature, the superficial gas velocities and particle sizes affect the C5 + selectivity and the reaction rates. Product yields are dependent on the operating conditions especially the temperature.展开更多
Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hy...Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.展开更多
Mathematical simulation was performed on tube-shell reactor for dimethyl ether (DME) synthesis from coal-based syngas. The model was established based on kinetics of dimethyl-ether synthesis from syngas over a bifun...Mathematical simulation was performed on tube-shell reactor for dimethyl ether (DME) synthesis from coal-based syngas. The model was established based on kinetics of dimethyl-ether synthesis from syngas over a bifunctional catalyst, which is mixed by methanol synthesis catalyst and dehydration catalyst as 1:1 mass ratio. Methanol synthesis from CO and CO2 and methanol dehydration were selected as three-independent reactions, CO, CO2, and DME as key components to estab- lish the one-dimensional mathematical model of the reactor. The gas concentration and temperature profiles inside the reactor tubes were obtained. The operating conditions affecting DME synthesis were also discussed based on the model. The simula- tions indicate that higher pressure and lower temperature at the inlet and rich hydrogen in the reactant are favorable in direct DME synthesis in fixed-bed process, and the temperature of boiling water affect the reactor performance seriously.展开更多
Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their ca...Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their catalytic activity towards syngas methanation reaction was also investigated using a fixed-bed integral reactor. It was demonstrated that the addition of manganese to Ni/Al2O3 catalysts can increase the catalyst surface area and average pore volume, but decrease NiO crystallite size, leading to higher activity and stability. The effects of reaction temperature, pressure and weight hourly space velocity (WHSV) on carbon oxides conversion and CH4 formation rate were also studied. High carbon oxides conversion, CH4 selectivity and formation rate were achieved at the reaction temperature range of 280 300℃.展开更多
The ZSM-22 and ZSM-35 zeolites were synthesized via the hydrothermal crystallization method. The samples were characterized by XRD, SEM, N_2 adsorption-desorption, NH_3-TPD, TPO, TG, and Raman spectrometry, and the re...The ZSM-22 and ZSM-35 zeolites were synthesized via the hydrothermal crystallization method. The samples were characterized by XRD, SEM, N_2 adsorption-desorption, NH_3-TPD, TPO, TG, and Raman spectrometry, and the results showed that ZSM-22 and ZSM-35 possessed similar microporous volume and acidity. In the alkylation of benzene with methanol, ZSM-22 and ZSM-35 showed different coke location, coking rate and graphitizing degree. Compared with the industrial ZSM-5, ZSM-22 and ZSM-35 both showed higher selectivity of toluene and xylene(93.63% and 96.50%,respectively) during the alkylation of benzene with methanol, and the selectivity of para-xylene in xylene isomers was51.96% and 41.45%, respectively. Meanwhile, the selectivity of ethylbenzene and C_9^+ aromatics was also lower than that of industrial ZSM-5.展开更多
Silicoaluminophosphate-34(SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a lar...Silicoaluminophosphate-34(SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a large external surface area was obtained by dissolving pseudoboehmite and tetraethylorthosilicate in an aqueous solution of tetraethylammonium hydroxide and subsequently adding phosphoric acid. After hydrolysis in an alkaline solution, the aluminum and silicon precursors exist as Al(OH)4-and SiO2(OH)-, respectively;this is beneficial for rapid nucleation and the formation of nanoaggregates in the following crystallization process. Additionally, to study the effect of the external surface area and pore size on the catalytic performance of different SAPO-34 structures, the alcoholysis of furfuryl alcohol to ethyl levulinate(EL) was chosen as a model reaction. In a comparison with the traditional cube-like SAPO-34, nanoaggregate SAPO-34 generated a higher yield of 74.1% of EL, whereas that with cube-like SAPO-34 was only 19.9%. Moreover, the stability was remarkably enhanced for nanoaggregate SAPO-34. The greater external surface area and larger number of external surface acid sites are helpful in improving the catalytic performance and avoiding coke deposition.展开更多
Particle descent velocities in an annular stripper were measured by a laser Doppler velocimetry(LDV)system.In the radial direction,particle descent velocity was relatively constant in the mid-region of the stripper an...Particle descent velocities in an annular stripper were measured by a laser Doppler velocimetry(LDV)system.In the radial direction,particle descent velocity was relatively constant in the mid-region of the stripper and increased towards the walls on both sides,exhibiting an anti-U-shaped distribution.Particle descent velocity in the radial mid-region increased with the increase of superficial gas velocity,and the maximum in the outer wall region increased significantly with the increase of solid mass flux.Superficial stripping gas velocity had stronger effect on particle velocity distributions near the stripper gas distributor,and such effect weakened with the increase of the distance from the distributor.Local particle velocity and its radial profiles could be adjusted by changing the superficial stripping gas velocity.Empirical formulas were established to describe the relationships between the local particle velocity and cross-sectional averaged velocity based on the effects of operating conditions and measuring positions.The result showed that the predicted data was in good agreement with the experimental value.展开更多
As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experime...As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.展开更多
The product distributions of Fischer-Tropsch synthesis over Co/AC catalyst are investigated under different reaction conditions in an integral fixed bed reactor.It is found that the product distributions deviate from ...The product distributions of Fischer-Tropsch synthesis over Co/AC catalyst are investigated under different reaction conditions in an integral fixed bed reactor.It is found that the product distributions deviate from the ASF distribution.The deviation from ASF distribution is analyzed by taking the readsorption of alkenes and the following secondary reaction into consideration.It is noted that the contents of alcohol,alkene and alkane decline with the increasing carbon number,showing a slighter declining tendency of alkanes than those of alkenes and alcohols.It is also found that high temperature,space velocity,H2/CO in feed gas and low pressure are preferential for light hydrocarbons and alcohols while against the chain propagation.The effect of space velocity on the product distributions especially on the light products is not obvious.It is noticed that low temperature,space velocity,H2/CO and high pressure lead to high contents of alcohols;high temperature,H2/CO and low space velocity lead to high contents of alkanes.The effect of pressure on the amounts of alkanes is not significant;high space velocity and low temperature,pressure,H2/CO are preferential for alkenes.展开更多
Ethylidene diacetate was prepared by reacting dimethyl ether,acetic acid and syngas in the presence of a catalytic system comprising RhI3,PPh3 and CH3I.The effects of reaction temperature,pressure,time and the CO/H2 m...Ethylidene diacetate was prepared by reacting dimethyl ether,acetic acid and syngas in the presence of a catalytic system comprising RhI3,PPh3 and CH3I.The effects of reaction temperature,pressure,time and the CO/H2 molar ratio on the conversion of dimethyl ether and the product selectivity were investigated under the same catalyst formulation.Results showed that a maximum conversion of dimethyl ether was obtained when a mixture consisting of 0.3 mol dimethyl ether and 120 ml acetic acid was reacted at 180 ℃ and 3.0 MPa for 10 h at a stirring speed of 600 rpm under a syngas flow with a CO/H2 molar ratio of 2.5,which was catalyzed by a catalyst mixture comprising 0.3 g RhI3,6 g PPh3 and 1.3 g CH3I.The selectivity of ethylidene diacetate increased with temperature,decreased with the CO/H2 molar ratio and exhibited a maximum with pressure.展开更多
The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterize...The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction (TPR), and M6ssbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr decreased the BET surface area and pore volume of the catalyst. The results of TPR and MES show that Zr suppresses the reduction and carburization of Fe catalysts because of the interaction between Fe and Zr. The FTS reaction results indicate that Zr decreases the FTS activity of Fe catalysts but improves the catalysts' stability. In addition, Zr promoter restraines the formation of light hydrocarbons (methane and C2-C4) and shifts the production distribution to the heavy hydrocarbons.展开更多
The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield ...The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield of methanol was 1 400 kt/a. The results show that if the flow mode of the cooling pipe gas and the catalytic bed gas change from countercurrent to concurrent, the catalytic bed temperature distribution does not fit the most optimum temperature curve of reversible exothermic reaction and the heat duty of heat changer in whole process increased seriously, which means that there is much more equipment investment and more operating cost. The gas flow mode of gas-cooled reactor affects the methanol yield slightly. There- fore, the countercurrent gas flow mode of gas-cooled reactor is more lucrative in the combined converter process.展开更多
An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear ar...An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.展开更多
Circular and branched pipe distributors were designed for Fischer-Tropsch synthesis in a fluidized-bed reactor. A numerical investigation of the effects of these distributors on product selectivity and production rate...Circular and branched pipe distributors were designed for Fischer-Tropsch synthesis in a fluidized-bed reactor. A numerical investigation of the effects of these distributors on product selectivity and production rate was performed. Under the same conditions, the circular distributor gave higher production rates for small diameter particles. For superficial gas velocities ranging from 5 to 15 times the minimum fluidization velocity, the production rates of methane and C5+(the sum of C10H22 and C22H46)were 18%, which was 2% higher than those using the branched pipe distributor, while the C5+ selectivity was 1% lower. For deeper beds, the circular distributor led to higher production rates and the selectivity for C5+ was 5% lower than that using the branched pipe distributor.展开更多
The penetration behavior of different kinds of coal ash slags into chrome corundum bricks was studied by cup test. As a preliminary attempt,the oxides of Fe2O3 and MgO were added into coal ash to reduce the erosion of...The penetration behavior of different kinds of coal ash slags into chrome corundum bricks was studied by cup test. As a preliminary attempt,the oxides of Fe2O3 and MgO were added into coal ash to reduce the erosion of refractories. Different cup tests were carried out to study coal slag erosion to the refractories. FactSage was used to simulate the phase diagram of the main chemical compositions in coal ash and in the refractories. Both results agreed with each other. The results show that the elements in coal slag can penetrate into bricks and the penetration deepens with the duration increasing; it is difficult for Fe but easier for Ca and Si to penetrate into bricks; different kinds of melting coal ashes penetrate into refractories differently and the penetration depth of silicon and calcium can be significantly reduced by adding oxides into coal ash.展开更多
A physicochemical method was used to adsorb glycerin in saline wastewater by strong base anion resin(D201).Boric acid,a kind of weak acid,can combine with glycerin,and a specific complex can be produced,which possess ...A physicochemical method was used to adsorb glycerin in saline wastewater by strong base anion resin(D201).Boric acid,a kind of weak acid,can combine with glycerin,and a specific complex can be produced,which possess bigger molecule than glycerin.Then,this specific complex could be adsorbed by strong base anion resin.Via the experiment,the equation of adsorption isotherm with D201 at 20℃ can be shown by lgx/m=1.74lgCe–5.72;for column test with simulative glycerin wastewater,the treatment capability was more than nine bed volumes,and 39.77 mg glycerin could be removed by per gram resin.When the NaCl concentration was 10 g/L,five bed volumes of simulative wastewater could be treated,and the adsorb mass was 29.09 mg/g.When the NaCl concentration was 30 g/L,only three bed volumes of simulative wastewater could be treated,and the adsorb mass was 14.83 mg/g.展开更多
The recent studies of direct alcohol/ether synthesis process in slurry reactors were reviewed,and the research work in our laboratory was carried out in this paper.a global kinetics model for direct dimethyl ether(DME...The recent studies of direct alcohol/ether synthesis process in slurry reactors were reviewed,and the research work in our laboratory was carried out in this paper.a global kinetics model for direct dimethyl ether(DME)synthesis from syngas over a novel Cu-Zn-Al-Zr slurry catalyst was established according to the total of 25 experimental data,and a steady-state one-dimensional mathematical model was further developed in bubble column slurry reactor(BCSR),which was assumed that the bubble phase was plug flow,and the liquid phase was fully mixed flow.The numerical simulations of reactor design of 100000 t/a dimethyl ether pilot plant indicate that higher pressure and lower temperature were favorable to the increase of CO conversion,selectivity of dimethyl ether,product yield and height of slurry bed.The optimal operating conditions for DME synthesis process were obtained:reaction temperature at 240℃,reactor pressure at 5 MPa and reactor diameter of 2.5 m.展开更多
文摘Thermax 700 thermo gravimetric analysis (TGA) instrument is introduced for the investigation of the reaction and deactivation kinetics of Methanol-to-Olefins (MTO) process with SAPO-34 catalyst.By the use of a special sample basket,the TGA instrument can be viewed as a plug flow fixed-bed reactor,while the weight change of SAPO-34 during reaction can be recorded online.Kinetic data are acquired in the temperature range of 648.2?748.2 K and space velocities of 7.08?35.91 h^-1 (WHSV).Catalyst activity is expressed with average coke content,and selectivity for different products is related as a function of coke content and temperature.Methane is also introduced into the lumping kinetic model,and power exponent function with first-order reaction is adopted for model deduction.Exponential function is tested to give the best fit for catalyst activity and product selectivity with the highest correlation coefficient.The nicely agreed results between experimental and calculated data suggest that the overall kinetic model would be meaningful in both product distribution prediction and reactor simulation.
基金Supported by the National High-Tech R&D Program of China[2011AA05A204]the Fundamental Research Funds for the Central Universities[222201717013]
文摘For the Fischer-Tropsch synthesis (FrS), this paper presents a numerical investigation in a 3D fiuidized bed reactor. The effect of the operation parameters such as bed temperature, superficial gas velocities, particle size and bed heights is discussed. A 3D-CFD model coupled with FTS chemical kinetics was set up. The computational resuits are compared with experimental data in terms of the components production rates, etc. The analysis shows that the bed heights, the bed temperature, the superficial gas velocities and particle sizes affect the C5 + selectivity and the reaction rates. Product yields are dependent on the operating conditions especially the temperature.
基金Supported by the Doctoral Foundation of China (20050251006)
文摘Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.
文摘Mathematical simulation was performed on tube-shell reactor for dimethyl ether (DME) synthesis from coal-based syngas. The model was established based on kinetics of dimethyl-ether synthesis from syngas over a bifunctional catalyst, which is mixed by methanol synthesis catalyst and dehydration catalyst as 1:1 mass ratio. Methanol synthesis from CO and CO2 and methanol dehydration were selected as three-independent reactions, CO, CO2, and DME as key components to estab- lish the one-dimensional mathematical model of the reactor. The gas concentration and temperature profiles inside the reactor tubes were obtained. The operating conditions affecting DME synthesis were also discussed based on the model. The simula- tions indicate that higher pressure and lower temperature at the inlet and rich hydrogen in the reactant are favorable in direct DME synthesis in fixed-bed process, and the temperature of boiling water affect the reactor performance seriously.
基金supported by the National Science and Technology Supporting Plan (No. 2006BAE02B02)
文摘Ni/Al2O3 catalysts with different amounts of manganese ranging from 1 to 3 wt% as promoter were prepared by co-impregnation method. The catalysts were characterized by N2 physisorption, XRD, TPR, SEM and TEM. Their catalytic activity towards syngas methanation reaction was also investigated using a fixed-bed integral reactor. It was demonstrated that the addition of manganese to Ni/Al2O3 catalysts can increase the catalyst surface area and average pore volume, but decrease NiO crystallite size, leading to higher activity and stability. The effects of reaction temperature, pressure and weight hourly space velocity (WHSV) on carbon oxides conversion and CH4 formation rate were also studied. High carbon oxides conversion, CH4 selectivity and formation rate were achieved at the reaction temperature range of 280 300℃.
基金financial support from the National Natural Science Foundation of China (No.2177061270)
文摘The ZSM-22 and ZSM-35 zeolites were synthesized via the hydrothermal crystallization method. The samples were characterized by XRD, SEM, N_2 adsorption-desorption, NH_3-TPD, TPO, TG, and Raman spectrometry, and the results showed that ZSM-22 and ZSM-35 possessed similar microporous volume and acidity. In the alkylation of benzene with methanol, ZSM-22 and ZSM-35 showed different coke location, coking rate and graphitizing degree. Compared with the industrial ZSM-5, ZSM-22 and ZSM-35 both showed higher selectivity of toluene and xylene(93.63% and 96.50%,respectively) during the alkylation of benzene with methanol, and the selectivity of para-xylene in xylene isomers was51.96% and 41.45%, respectively. Meanwhile, the selectivity of ethylbenzene and C_9^+ aromatics was also lower than that of industrial ZSM-5.
文摘Silicoaluminophosphate-34(SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a large external surface area was obtained by dissolving pseudoboehmite and tetraethylorthosilicate in an aqueous solution of tetraethylammonium hydroxide and subsequently adding phosphoric acid. After hydrolysis in an alkaline solution, the aluminum and silicon precursors exist as Al(OH)4-and SiO2(OH)-, respectively;this is beneficial for rapid nucleation and the formation of nanoaggregates in the following crystallization process. Additionally, to study the effect of the external surface area and pore size on the catalytic performance of different SAPO-34 structures, the alcoholysis of furfuryl alcohol to ethyl levulinate(EL) was chosen as a model reaction. In a comparison with the traditional cube-like SAPO-34, nanoaggregate SAPO-34 generated a higher yield of 74.1% of EL, whereas that with cube-like SAPO-34 was only 19.9%. Moreover, the stability was remarkably enhanced for nanoaggregate SAPO-34. The greater external surface area and larger number of external surface acid sites are helpful in improving the catalytic performance and avoiding coke deposition.
基金Supported by the National High-Tech R&D Program of China(2011AA05A204)the Fundamental Research Funds for the Central Universities(222201817013).
文摘Particle descent velocities in an annular stripper were measured by a laser Doppler velocimetry(LDV)system.In the radial direction,particle descent velocity was relatively constant in the mid-region of the stripper and increased towards the walls on both sides,exhibiting an anti-U-shaped distribution.Particle descent velocity in the radial mid-region increased with the increase of superficial gas velocity,and the maximum in the outer wall region increased significantly with the increase of solid mass flux.Superficial stripping gas velocity had stronger effect on particle velocity distributions near the stripper gas distributor,and such effect weakened with the increase of the distance from the distributor.Local particle velocity and its radial profiles could be adjusted by changing the superficial stripping gas velocity.Empirical formulas were established to describe the relationships between the local particle velocity and cross-sectional averaged velocity based on the effects of operating conditions and measuring positions.The result showed that the predicted data was in good agreement with the experimental value.
基金Supported by the National Technology Support Program of China(2006BAE02B02)the National Basic Research Program of China (2005CB221205)
文摘As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.
基金supported by the National High Technology Research and Development Plan of China(863 plan)(Project No.2006AA05A111)
文摘The product distributions of Fischer-Tropsch synthesis over Co/AC catalyst are investigated under different reaction conditions in an integral fixed bed reactor.It is found that the product distributions deviate from the ASF distribution.The deviation from ASF distribution is analyzed by taking the readsorption of alkenes and the following secondary reaction into consideration.It is noted that the contents of alcohol,alkene and alkane decline with the increasing carbon number,showing a slighter declining tendency of alkanes than those of alkenes and alcohols.It is also found that high temperature,space velocity,H2/CO in feed gas and low pressure are preferential for light hydrocarbons and alcohols while against the chain propagation.The effect of space velocity on the product distributions especially on the light products is not obvious.It is noticed that low temperature,space velocity,H2/CO and high pressure lead to high contents of alcohols;high temperature,H2/CO and low space velocity lead to high contents of alkanes.The effect of pressure on the amounts of alkanes is not significant;high space velocity and low temperature,pressure,H2/CO are preferential for alkenes.
文摘Ethylidene diacetate was prepared by reacting dimethyl ether,acetic acid and syngas in the presence of a catalytic system comprising RhI3,PPh3 and CH3I.The effects of reaction temperature,pressure,time and the CO/H2 molar ratio on the conversion of dimethyl ether and the product selectivity were investigated under the same catalyst formulation.Results showed that a maximum conversion of dimethyl ether was obtained when a mixture consisting of 0.3 mol dimethyl ether and 120 ml acetic acid was reacted at 180 ℃ and 3.0 MPa for 10 h at a stirring speed of 600 rpm under a syngas flow with a CO/H2 molar ratio of 2.5,which was catalyzed by a catalyst mixture comprising 0.3 g RhI3,6 g PPh3 and 1.3 g CH3I.The selectivity of ethylidene diacetate increased with temperature,decreased with the CO/H2 molar ratio and exhibited a maximum with pressure.
文摘The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction (TPR), and M6ssbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr decreased the BET surface area and pore volume of the catalyst. The results of TPR and MES show that Zr suppresses the reduction and carburization of Fe catalysts because of the interaction between Fe and Zr. The FTS reaction results indicate that Zr decreases the FTS activity of Fe catalysts but improves the catalysts' stability. In addition, Zr promoter restraines the formation of light hydrocarbons (methane and C2-C4) and shifts the production distribution to the heavy hydrocarbons.
文摘The mathematic model of combined converter with two different flow modes of gas-cooled reactor was established. The effects of gas flow mode in gas-cooled reactor on combined converter was investigated with the yield of methanol was 1 400 kt/a. The results show that if the flow mode of the cooling pipe gas and the catalytic bed gas change from countercurrent to concurrent, the catalytic bed temperature distribution does not fit the most optimum temperature curve of reversible exothermic reaction and the heat duty of heat changer in whole process increased seriously, which means that there is much more equipment investment and more operating cost. The gas flow mode of gas-cooled reactor affects the methanol yield slightly. There- fore, the countercurrent gas flow mode of gas-cooled reactor is more lucrative in the combined converter process.
基金support of National Natural Science Foundation of P.R.China(22308104).
文摘An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.
文摘Circular and branched pipe distributors were designed for Fischer-Tropsch synthesis in a fluidized-bed reactor. A numerical investigation of the effects of these distributors on product selectivity and production rate was performed. Under the same conditions, the circular distributor gave higher production rates for small diameter particles. For superficial gas velocities ranging from 5 to 15 times the minimum fluidization velocity, the production rates of methane and C5+(the sum of C10H22 and C22H46)were 18%, which was 2% higher than those using the branched pipe distributor, while the C5+ selectivity was 1% lower. For deeper beds, the circular distributor led to higher production rates and the selectivity for C5+ was 5% lower than that using the branched pipe distributor.
文摘The penetration behavior of different kinds of coal ash slags into chrome corundum bricks was studied by cup test. As a preliminary attempt,the oxides of Fe2O3 and MgO were added into coal ash to reduce the erosion of refractories. Different cup tests were carried out to study coal slag erosion to the refractories. FactSage was used to simulate the phase diagram of the main chemical compositions in coal ash and in the refractories. Both results agreed with each other. The results show that the elements in coal slag can penetrate into bricks and the penetration deepens with the duration increasing; it is difficult for Fe but easier for Ca and Si to penetrate into bricks; different kinds of melting coal ashes penetrate into refractories differently and the penetration depth of silicon and calcium can be significantly reduced by adding oxides into coal ash.
文摘A physicochemical method was used to adsorb glycerin in saline wastewater by strong base anion resin(D201).Boric acid,a kind of weak acid,can combine with glycerin,and a specific complex can be produced,which possess bigger molecule than glycerin.Then,this specific complex could be adsorbed by strong base anion resin.Via the experiment,the equation of adsorption isotherm with D201 at 20℃ can be shown by lgx/m=1.74lgCe–5.72;for column test with simulative glycerin wastewater,the treatment capability was more than nine bed volumes,and 39.77 mg glycerin could be removed by per gram resin.When the NaCl concentration was 10 g/L,five bed volumes of simulative wastewater could be treated,and the adsorb mass was 29.09 mg/g.When the NaCl concentration was 30 g/L,only three bed volumes of simulative wastewater could be treated,and the adsorb mass was 14.83 mg/g.
基金supported by a grant from the Major State Basic Research Development Program of China(973 Program,No.2005CB221205).
文摘The recent studies of direct alcohol/ether synthesis process in slurry reactors were reviewed,and the research work in our laboratory was carried out in this paper.a global kinetics model for direct dimethyl ether(DME)synthesis from syngas over a novel Cu-Zn-Al-Zr slurry catalyst was established according to the total of 25 experimental data,and a steady-state one-dimensional mathematical model was further developed in bubble column slurry reactor(BCSR),which was assumed that the bubble phase was plug flow,and the liquid phase was fully mixed flow.The numerical simulations of reactor design of 100000 t/a dimethyl ether pilot plant indicate that higher pressure and lower temperature were favorable to the increase of CO conversion,selectivity of dimethyl ether,product yield and height of slurry bed.The optimal operating conditions for DME synthesis process were obtained:reaction temperature at 240℃,reactor pressure at 5 MPa and reactor diameter of 2.5 m.