期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting
1
作者 Farhan Ullah Xuexia Zhang +2 位作者 Mansoor Khan Muhammad Abid Abdullah Mohamed 《Computers, Materials & Continua》 SCIE EI 2024年第5期3373-3395,共23页
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article... Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions. 展开更多
关键词 Ensemble learning machine learning real-time data analysis stakeholder analysis temporal convolutional network wind power forecasting
在线阅读 下载PDF
Wind Power Forecasting Using Grey Wolf Optimized Long Short-Term Memory Based on Numerical Weather Prediction
2
作者 Mohamed El-Dosuky Reema Alowaydan Bashayer Alqarni 《Journal of Power and Energy Engineering》 2024年第12期1-16,共16页
Wind power generation is among the most promising and eco-friendly energy sources today. Wind Power Forecasting (WPF) is essential for boosting energy efficiency and maintaining the operational stability of power grid... Wind power generation is among the most promising and eco-friendly energy sources today. Wind Power Forecasting (WPF) is essential for boosting energy efficiency and maintaining the operational stability of power grids. However, predicting wind power comes with significant challenges, such as weather uncertainties, wind variability, complex terrain, limited data, insufficient measurement infrastructure, intricate interdependencies, and short lead times. These factors make it difficult to accurately forecast wind behavior and respond to sudden power output changes. This study aims to precisely forecast electricity generation from wind turbines, minimize grid operation uncertainties, and enhance grid reliability. It leverages historical wind farm data and Numerical Weather Prediction data, using k-Nearest Neighbors for pre-processing, K-means clustering for categorization, and Long Short-Term Memory (LSTM) networks for training and testing, with model performance evaluated across multiple metrics. The Grey Wolf Optimized (GWO) LSTM classification technique, a deep learning model suited to time series analysis, effectively handles temporal dependencies in input data through memory cells and gradient-based optimization. Inspired by grey wolves’ hunting strategies, GWO is a population-based metaheuristic optimization algorithm known for its strong performance across diverse optimization tasks. The proposed Grey Wolf Optimized Deep Learning model achieves an R-squared value of 0.97279, demonstrating that it explains 97.28% of the variance in wind power data. This model surpasses a reference study that achieved an R-squared value of 0.92 with a hybrid deep learning approach but did not account for outliers or anomalous data. 展开更多
关键词 wind Power forecasting Long Short-Term Memory Numerical Weather Prediction Grey Wolf Optimization
在线阅读 下载PDF
Short Term Wind Power Forecasting Using Autoregressive Integrated Moving Average Approach
3
《Journal of Energy and Power Engineering》 2013年第11期2089-2095,共7页
Wind energy is one of the most promising electricity generating sources as a clean and free alternate compared with the conventional power plants and due to the volatility feature in the wind speeds it will reflect so... Wind energy is one of the most promising electricity generating sources as a clean and free alternate compared with the conventional power plants and due to the volatility feature in the wind speeds it will reflect some problems in power systems reliability particularly if the system is deeply penetrated by wind farms. Therefore, wind power forecasting issue become and is still an important scope that will help in ED (economic dispatch), UC (unit commitment) purposes to get more reliable and economic systems. This paper introduces short term wind power forecasting model, based on ARIMA (autoregressive integrated moving average) which will be applied to hourly wind data from Zaafarana 5 project in Egypt. The proposed model successfully outperforms the persistence model with significant improvement up to 6 h ahead. 展开更多
关键词 wind forecasting time series analysis ARIMA Box-Jenkins model.
在线阅读 下载PDF
Short-term forecasting optimization algorithms for wind speed along Qinghai-Tibet railway based on different intelligent modeling theories 被引量:8
4
作者 刘辉 田红旗 李燕飞 《Journal of Central South University》 SCIE EI CAS 2009年第4期690-696,共7页
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s... To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation. 展开更多
关键词 train safety wind speed forecasting wavelet analysis time series analysis Kalman filter optimization algorithm
在线阅读 下载PDF
Wind speed forecasting based on wavelet decomposition and wavelet neural networks optimized by the Cuckoo search algorithm 被引量:8
5
作者 ZHANG Ye YANG Shiping +2 位作者 GUO Zhenhai GUO Yanling ZHAO Jing 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第2期107-115,共9页
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In... Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models. 展开更多
关键词 wind speed forecast wavelet decomposition neural network Cuckoo search algorithm
在线阅读 下载PDF
Wind Power Forecasting Methods Based on Deep Learning:A Survey 被引量:6
6
作者 Xing Deng Haijian Shao +2 位作者 Chunlong Hu Dengbiao Jiang Yingtao Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第1期273-301,共29页
Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid.Aiming to provide refere... Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid.Aiming to provide reference strategies for relevant researchers as well as practical applications,this paper attempts to provide the literature investigation and methods analysis of deep learning,enforcement learning and transfer learning in wind speed and wind power forecasting modeling.Usually,wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state,which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure,temperature,roughness,and obstacles.As an effective method of high-dimensional feature extraction,deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design,such as adding noise to outputs,evolutionary learning used to optimize hidden layer weights,optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting.The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness,instantaneity and seasonal characteristics. 展开更多
关键词 Deep learning reinforcement learning transfer learning wind power forecasting
在线阅读 下载PDF
Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed 被引量:1
7
作者 Neelam Mughees Mujtaba Hussain Jaffery +2 位作者 Abdullah Mughees Anam Mughees Krzysztof Ejsmont 《Computers, Materials & Continua》 SCIE EI 2023年第6期6375-6393,共19页
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h... Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting. 展开更多
关键词 Deep stacked autoencoder sequence to sequence autoencoder bidirectional long short-term memory network wind speed forecasting solar irradiation forecasting
在线阅读 下载PDF
Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features 被引量:1
8
作者 Siva Sankari Subbiah Senthil Kumar Paramasivan +2 位作者 Karmel Arockiasamy Saminathan Senthivel Muthamilselvan Thangavel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3829-3844,共16页
Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research ... Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others. 展开更多
关键词 Bi-directional long short term memory boruta feature selection deep learning machine learning wind speed forecasting
在线阅读 下载PDF
Wind Speed Forecasting Based on ARMA-ARCH Model in Wind Farms 被引量:3
9
作者 He Yu Gao Shan Chen Hao 《Electricity》 2011年第3期30-34,共5页
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series... Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value. 展开更多
关键词 short-term wind speed forecasting ARMA model ARCH effect volatility clustering
在线阅读 下载PDF
Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations 被引量:1
10
作者 钟剑 董钢 +2 位作者 孙一妹 张钊扬 吴玉琴 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第11期167-173,共7页
The present work reports the development of nonlinear time series prediction method of genetic algorithm(GA) with singular spectrum analysis(SSA) for forecasting the surface wind of a point station in the South Ch... The present work reports the development of nonlinear time series prediction method of genetic algorithm(GA) with singular spectrum analysis(SSA) for forecasting the surface wind of a point station in the South China Sea(SCS) with scatterometer observations.Before the nonlinear technique GA is used for forecasting the time series of surface wind,the SSA is applied to reduce the noise.The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique.The predictions have been compared with persistence forecasts in terms of root mean square error.The predicted surface wind with GA and SSA made up to four days(longer for some point station) in advance have been found to be significantly superior to those made by persistence model.This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. 展开更多
关键词 forecasting persistence alternate ocean meridional winds scatter reconstructed longer zonal
在线阅读 下载PDF
Bias Correction in Wind Direction Forecasting Using the Circular-Circular Regression Method
11
作者 XU Jing-Jing HU Fei +4 位作者 XIAO Zi-Niu CHENG Xue-Ling XU Jing-Jing XIAO Zi-Niu CHENG Xue-Ling 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第2期87-91,共5页
Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional... Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional model output statistics and bias correction methods are applied. However, wind direction is an angular variable; therefore, such traditional methods are ineffective for its evaluation. This paper proposes an effective bias correction technique for wind direction forecasting of turbine height from numerical weather prediction models, which is based on a circular-circular regression approach. The technique is applied to a 24-h forecast of 65-m wind directions observed at Yangmeishan wind farm, Yunnan Province, China, which consistently yields improvements in forecast performance parameters such as smaller absolute mean error and stronger similarity in wind rose diagram pattern. 展开更多
关键词 wind direction forecast bias correction circular-circular regression numerical model wind power prediction
在线阅读 下载PDF
Caribbean Sea Offshore Wind Energy Assessment and Forecasting
12
作者 Brandon J.Bethel 《Journal of Marine Science and Application》 CSCD 2021年第3期558-571,共14页
The exploitation of wind energy is rapidly evolving and is manifested in the ever-expanding global network of offshore wind energy farms.For the Small Island Developing States of the Caribbean Sea(CS),harnessing this ... The exploitation of wind energy is rapidly evolving and is manifested in the ever-expanding global network of offshore wind energy farms.For the Small Island Developing States of the Caribbean Sea(CS),harnessing this mature technology is an important first step in the transition away from fossil fuels.This paper uses buoy and satellite observations of surface wind speed in the CS to estimate wind energy resources over the 2009–201911-year period and initiates hour-ahead forecasting using the long short-term memory(LSTM)network.Observations of wind power density(WPD)at the 100-m height showed a mean of approximately 1000 W/m^(2) in the Colombia Basin,though this value decreases radially to 600–800 W/m^(2) in the central CS to a minimum of approximately 250 W/m^(2) at its borders in the Venezuela Basin.The Caribbean Low-Level Jet(CLLJ)is also responsible for the waxing and waning of surface wind speed and as such,resource stability,though stable as estimated through monthly and seasonal coefficients of variation,is naturally governed by CLLJ activity.Using a commercially available offshore wind turbine,wind energy generation at four locations in the CS is estimated.Electricity production is greatest and most stable in the central CS than at either its eastern or western borders.Wind speed forecasts are also found to be more accurate at this location,and though technology currently restricts offshore wind turbines to shallow water,outward migration to and colonization of deeper water is an attractive option for energy exploitation. 展开更多
关键词 Offshore wind energy wind energy forecasting Caribbean Sea Long short-term memory network Offshore wind turbines
在线阅读 下载PDF
Inferential Statistics and Machine Learning Models for Short-TermWind Power Forecasting
13
作者 Ming Zhang Hongbo Li Xing Deng 《Energy Engineering》 EI 2022年第1期237-252,共16页
The inherent randomness,intermittence and volatility of wind power generation compromise the quality of the wind power system,resulting in uncertainty in the system’s optimal scheduling.As a result,it’s critical to ... The inherent randomness,intermittence and volatility of wind power generation compromise the quality of the wind power system,resulting in uncertainty in the system’s optimal scheduling.As a result,it’s critical to improve power quality and assure real-time power grid scheduling and grid-connected wind farm operation.Inferred statistics are utilized in this research to infer general features based on the selected information,confirming that there are differences between two forecasting categories:Forecast Category 1(0-11 h ahead)and Forecast Category 2(12-23 h ahead).In z-tests,the null hypothesis provides the corresponding quantitative findings.To verify the final performance of the prediction findings,five benchmark methodologies are used:Persistence model,LMNN(Multilayer Perceptron with LMlearningmethods),NARX(Nonlinear autoregressive exogenous neural networkmodel),LMRNN(RNNs with LM training methods)and LSTM(Long short-term memory neural network).Experiments using a real dataset show that the LSTM network has the highest forecasting accuracy when compared to other benchmark approaches including persistence model,LMNN,NARX network,and LMRNN,and the 23-steps forecasting accuracy has improved by 19.61%. 展开更多
关键词 wind power forecasting correlation analysis inferential statistics neural network-related approaches
在线阅读 下载PDF
Short-Term Wind Speed Forecasts over the Pearl River Estuary:Numerical Model Evaluation and Deterministic Post-Processing
14
作者 SUN Xian SUN Lei +4 位作者 LIANG Xiu-ji SU Ye-kang HUANG Wen-min KANG Hong-ping XIA Dong 《Journal of Tropical Meteorology》 2024年第4期390-404,共15页
The Pearl River Estuary(PRE)is one of China’s busiest shipping hubs and fishery production centers,as well as a region with abundant island tourism and wind energy resources,which calls for accurate short-term wind f... The Pearl River Estuary(PRE)is one of China’s busiest shipping hubs and fishery production centers,as well as a region with abundant island tourism and wind energy resources,which calls for accurate short-term wind forecasts.First,this study evaluated three operational numerical models,i.e.,ECMWF-EC,NCEP-GFS,and CMA-GD,for their ability to predict short-term wind speed over the PRE against in-situ observations during 2018-2021.Overall,ECMWF-EC out-performs other models with an average RMSE of 2.24 m s^(-1)and R of 0.57,but the NCEP-GFS performs better in the case of strong winds.Then,various bias correction and multi-model ensemble(MME)methods are used to perform the deterministic post-processing using a local and lead-specific scheme.Two-factor model output statistics(MOS2)is the optimal bias correction method for reducing(increasing)the overall RMSE(R)to 1.62(0.70)m s^(-1),demonstrating the benefits of considering both initial and lead-specific information.Intercomparison of MME results reveals that Multiple linear regression(MLR)presents superior skills,followed by random forest(RF),but it is slightly inferior to MOS2,particularly for the first few forecasting hours.Furthermore,the incorporation of additional features in MLR reduces the overall RMSE to 1.53 m s^(-1)and increases R to 0.74.Similarly,RF presents comparable results,and both outperform MOS2 in terms of correcting their deficiencies at the first few lead hours and limiting the error growth rate.Despite the satisfactory skill of deterministic post-processing techniques,they are unable to achieve a balanced performance between mean and extreme statistics.This highlights the necessity for further development of probabilistic forecasts. 展开更多
关键词 Pearl River Estuary wind speed forecast numerical model evaluation bias correction multi-model ensemble
在线阅读 下载PDF
Wind Speed Prediction Based on Improved VMD-BP-CNN-LSTM Model
15
作者 Chaoming Shu Bin Qin Xin Wang 《Journal of Power and Energy Engineering》 2024年第1期29-43,共15页
Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind s... Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms. 展开更多
关键词 wind Speed Forecast Long Short-Term Memory Network BP Neural Network Variational Mode Decomposition Data Fusion
在线阅读 下载PDF
Short-Term Wind Power Prediction Based on ICEEMDAN-SE-LSTM Neural Network Model with Classifying Seasonal 被引量:2
16
作者 Shumin Sun Peng Yu +3 位作者 Jiawei Xing Yan Cheng Song Yang Qian Ai 《Energy Engineering》 EI 2023年第12期2761-2782,共22页
Wind power prediction is very important for the economic dispatching of power systems containing wind power.In this work,a novel short-term wind power prediction method based on improved complete ensemble empirical mo... Wind power prediction is very important for the economic dispatching of power systems containing wind power.In this work,a novel short-term wind power prediction method based on improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)and(long short-term memory)LSTM neural network is proposed and studied.First,the original data is prepossessed including removing outliers and filling in the gaps.Then,the random forest algorithm is used to sort the importance of each meteorological factor and determine the input climate characteristics of the forecast model.In addition,this study conducts seasonal classification of the annual data where ICEEMDAN is adopted to divide the original wind power sequence into numerous modal components according to different seasons.On this basis,sample entropy is used to calculate the complexity of each component and reconstruct them into trend components,oscillation components,and random components.Then,these three components are input into the LSTM neural network,respectively.Combined with the predicted values of the three components,the overall power prediction results are obtained.The simulation shows that ICEEMDAN-SE-LSTM achieves higher prediction accuracy ranging from 1.57%to 9.46%than other traditional models,which indicates the reliability and effectiveness of the proposed method for power prediction. 展开更多
关键词 wind forecasting ICEEMDAN long short-term memory seasonal classification sample entropy
在线阅读 下载PDF
Assessing the Impact of Physical Configuration and Lead Time on WRF Forecasting of an Extreme Wind Event
17
作者 Rocío OTERO Matías SUAREZ +6 位作者 Edgardo PIEROBON Leandro MATURANO Ignacio MONTAMAT Juan Ezequiel SANCHEZ Lucia SANDALIO Andrés RODRIGUEZ Denis POFFO 《Journal of Meteorological Research》 2025年第1期154-171,共18页
The central region of Argentina is known to be a source of some most extreme weather events in the world,which are partially associated with the passage of cold fronts accompanied often by extreme wind gusts.This may ... The central region of Argentina is known to be a source of some most extreme weather events in the world,which are partially associated with the passage of cold fronts accompanied often by extreme wind gusts.This may cause severe property damage and even loss of human life.Nevertheless,there is a lack of studies that evaluate the performance of the numerical weather prediction(NWP)models such as weather research and forecasting(WRF)model in anticipating this type of weather in the region.This study compares the performance of the operational WRF in Argentina using four combinations of various planetary boundary layer(PBL)and microphysics parameterization schemes under varied lead times in predicting an extreme wind event(gusts>30 m s^(-1))in Central Argentina.The results demonstrate that the WRF model is capable of providing an acceptable prediction of wind speed during an extreme event.It is found that no single combination outperforms the others,although there is a slight tendency for Combination A,which utilizes the Mellor-Yamada-Janjic(MYJ)parameterization for the PBL and the Eta similarity parameterization for the surface layer,to more accurately capture the extreme wind speed.Compared with wind gust observations at five weather stations,the wind gust parameterization predicted the intensity and occurrence time of the peak wind,with an acceptable bias(time of peak<±1 h).Analysis of grid configurations(resolutions of 4 vs 9/3/1 km)revealed that higher resolution does not imply an improvement in the wind gust forecast for this particular event.With regard to lead time,a shorter lead time does not necessarily result in more accurate forecasts.Nevertheless,it is beneficial to conduct multiple sensitivity runs in order to obtain and understand the dispersion of forecasted wind speeds. 展开更多
关键词 extreme wind wind event weather research and forecasting(WRF)model wind gust forecast cold front lead time
原文传递
CORRECTION OF ASYMMETRIC STRENGTHENING OF QUIKSCAT WIND FIELD AND ASSIMILATION APPLICATION IN TYPHOON SIMULATION 被引量:4
18
作者 王亮 陆汉城 +1 位作者 潘晓滨 张云 《Journal of Tropical Meteorology》 SCIE 2009年第1期78-82,共5页
As an approach to the technological problem that the wind data of QuikSCAT scatterometer cannot accurately describe the zone of typhoon-level strong wind speed, some objective factors such as the typhoon moving speed,... As an approach to the technological problem that the wind data of QuikSCAT scatterometer cannot accurately describe the zone of typhoon-level strong wind speed, some objective factors such as the typhoon moving speed, direction and friction are introduced in this study to construct the asymmetric strengthening of the QuikSCAT wind field. Then by adopting a technology of four-dimensional data assimilation, an experiment that includes both the assimilation and forecasting phases is designed to simulate Typhoon Rananim numerically. The results show that with model constraints and adjustment, this technology can incorporate the QuikSCAT wind data to the entire column of the model atmosphere, improve greatly the simulating effects of the whole-column wind, pressure field and the track as well as the simulated typhoon intensity covered by the forecast phase, and work positively for the forecasting of landfall locations. 展开更多
关键词 Numerical simulation typhoon forecast data assimilation QuikSCAT wind field asymmetric bogus model
在线阅读 下载PDF
The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy
19
作者 Dandan Xu Haijian Shao +1 位作者 Xing Deng Xia Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期567-597,共31页
As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as w... As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as wind and photovoltaic power(PV),is described in this paper,with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting.The methods for forecasting wind power and PV production.The physical model,statistical learningmethod,andmachine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production.Moreover,the experiments demonstrated that cloud map identification has a significant impact on PV generation.With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes,this paper summarizes the classification of wind power and PV generation systems,as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods. 展开更多
关键词 Deep learning wind power forecasting PV generation and forecasting hidden-layer information analysis topology optimization
在线阅读 下载PDF
An Experiment on the Prediction of the Surface Wind Speed in Chongli Based on the WRF Model:Evaluation and Calibration
20
作者 Na LI Lingkun RAN +1 位作者 Dongdong SHEN Baofeng JIAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第5期845-861,共17页
In this study,the ability of the Weather Research and Forecasting(WRF)model to generate accurate near-surface wind speed forecasts at kilometer-to subkilometer-scale resolution along race tracks(RTs)in Chongli during ... In this study,the ability of the Weather Research and Forecasting(WRF)model to generate accurate near-surface wind speed forecasts at kilometer-to subkilometer-scale resolution along race tracks(RTs)in Chongli during the wintertime is evaluated.The performance of two postprocessing methods,including the decaying-averaging(DA)and analogy-based(AN)methods,is tested to calibrate the near-surface wind speed forecasts.It is found that great uncertainties exist in the model’s raw forecasts of the near-surface wind speed in Chongli.Improvement of the forecast accuracy due to refinement of the horizontal resolution from kilometer to subkilometer scale is limited and not systematic.The RT sites tend to have large bias and centered root mean square error(CRMSE)values and also exhibit notable underestimation of high-wind speeds,notable overestimation or underestimation of the near-surface wind speed at high altitudes,and notable underestimation during daytime.These problems are not resolved by increasing the horizontal resolution and are even exacerbated,which leads to great challenges in the accurate forecasting of the near-surface wind speed in the competition areas in Chongli.The application of postprocessing methods can greatly improve the forecast accuracy of near-surface wind speed.Both methods used in this study have comparable abilities in reducing the(positive or negative)bias,while the AN method is also capable of decreasing the random error reflected by CRMSE.In particular,the large biases for high-wind speeds,wind speeds at high-altitude stations,and wind speeds during the daytime at RT stations can be evidently reduced. 展开更多
关键词 near-surface wind speed forecast bias corrections complex terrain
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部