期刊文献+

Short Term Wind Power Forecasting Using Autoregressive Integrated Moving Average Approach

Short Term Wind Power Forecasting Using Autoregressive Integrated Moving Average Approach
在线阅读 下载PDF
导出
摘要 Wind energy is one of the most promising electricity generating sources as a clean and free alternate compared with the conventional power plants and due to the volatility feature in the wind speeds it will reflect some problems in power systems reliability particularly if the system is deeply penetrated by wind farms. Therefore, wind power forecasting issue become and is still an important scope that will help in ED (economic dispatch), UC (unit commitment) purposes to get more reliable and economic systems. This paper introduces short term wind power forecasting model, based on ARIMA (autoregressive integrated moving average) which will be applied to hourly wind data from Zaafarana 5 project in Egypt. The proposed model successfully outperforms the persistence model with significant improvement up to 6 h ahead.
出处 《Journal of Energy and Power Engineering》 2013年第11期2089-2095,共7页 能源与动力工程(美国大卫英文)
关键词 Wind forecasting time series analysis ARIMA Box-Jenkins model. 移动平均法 功率预测 风电场 自回归 短期 电力系统可靠性 预测模型 ARIMA
  • 相关文献

参考文献24

  • 1L. Landberg, Short-term prediction of the power production from wind farms, Journal of Wind Engineering and Industrial Aerodynamics 80 (112) (2009) 207-220.
  • 2M. Bhaskar, A. Jain, N.V. Srinath, Wind speed forecasting: Present status, in: 2010 International Conference on Power System Technology, Hangzhou, 2010.
  • 3G. Giebel, R. Brownsword, G. Kariniotakis, M. Denhard, C. Draxl, The State of the Art in Short-Term Prediction of Wind Power, A Literature Overview, 2nd ed., Jan. 2011.
  • 4C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, G. Conzelrnann, Wind Power Forecasting: State-of-the-Art, Argonne National Laboratory ANLIDIS-lO-l, Nov. 2009.
  • 5L. Landberg, Short-term prediction of local wind conditions, Ph.D. Dissertation, Rise National Laboratory, Roskilde, Denmark, 1994.
  • 6U. Focken, M. Lange, H.P. Waldl, Previento-A wind power prediction system with an innovative upscaling algorithm, in: Proceedings of the European Wind Energy Conference EWEC'OI, Copenhagen, Denmark, June 2-6, 2001, pp. 826-829.
  • 7I. Marti, D. Cabez6n, 1. Villanueva, M.J. San Isidro, Y. Loureiro, E. Cantero, et al., LocalPred and RegioPred, advanced tools for wind energy prediction in complex terrain, in: Proceedings of the European Wind Energy Conference EWEC'03, Madrid, Spain, June 16-19,2003.
  • 8M.A. Kulkarni, S. Patil, G.V. Rama, P.N. Sen, Wind speed prediction using statistical regression and neural network, Journal of Earth System Science 117 (4) (2008) 457-463.
  • 9T.H.M. El-Fouly, E.F. El-Saadany, M.M.A. Salama, Improved grey predictor rolling models for wind power prediction, IEEE Trans. Power Syst. 21 (3) (2006) 1450-1452.
  • 10R. Li, Y. Wang, Short-term wind speed forecasting for wind farm based on empirical mode decomposition, in: Proceedings of Electrical Machines and Systems, ICEMS 2008, Wuhan, Oct. 17-20,2008.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部