Solid polymer electrolytes(SPEs)have attracted considerable attention for solid-state lithium-metal batteries(LMBs)with high energy density and enhanced safety for future applications.In this study,an SPE was devel-op...Solid polymer electrolytes(SPEs)have attracted considerable attention for solid-state lithium-metal batteries(LMBs)with high energy density and enhanced safety for future applications.In this study,an SPE was devel-oped based on a poly(ethyl acrylate)(PEA)polymer matrix with the vinylene carbonate(VC)additive(defined as PEA-VC)for high-voltage solid-state LMBs.Results show that introducing the VC additive into the PEA-based SPE leads to high lithium-ion conductivity(1.57 mS/cm at 22°C),a high lithium-ion transference number(0.73),and a wide electrochemical stability window(up to 4.9 V vs.Li/Li^(+)).The remarkable compatibil-ity of the PEA-VC SPE with lithium metal anodes and high-voltage cathodes was demonstrated in Li//Li symmetric cells(800 h lifetime at a current density of 0.1 mA/cm^(2) at 22°C)and Li//LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)full cells(with a capacity retention of 77.8%after 100 cycles at 0.2C).The improved stability is attributed to the introduction of the VC additive,which helps form a robust cathode–electrolyte interphase,effectively suppressing parasitic interface side reactions.Overall,this study highlights the role of VC addi-tives in high-voltage and solid-state LMBs,offering a general yet effective approach for addressing the interfa-cial instability issue through an additive-engineering strategy.展开更多
基金supported by the startup funding of HLX and the Assistant Secretary for Energy Efficiency and Renewable Energy,Vehicle Technology Office of the U.S.Department of Energy(DOE)through the Advanced Battery Materials Research Program under contract No.DE-SC0012704.
文摘Solid polymer electrolytes(SPEs)have attracted considerable attention for solid-state lithium-metal batteries(LMBs)with high energy density and enhanced safety for future applications.In this study,an SPE was devel-oped based on a poly(ethyl acrylate)(PEA)polymer matrix with the vinylene carbonate(VC)additive(defined as PEA-VC)for high-voltage solid-state LMBs.Results show that introducing the VC additive into the PEA-based SPE leads to high lithium-ion conductivity(1.57 mS/cm at 22°C),a high lithium-ion transference number(0.73),and a wide electrochemical stability window(up to 4.9 V vs.Li/Li^(+)).The remarkable compatibil-ity of the PEA-VC SPE with lithium metal anodes and high-voltage cathodes was demonstrated in Li//Li symmetric cells(800 h lifetime at a current density of 0.1 mA/cm^(2) at 22°C)and Li//LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)full cells(with a capacity retention of 77.8%after 100 cycles at 0.2C).The improved stability is attributed to the introduction of the VC additive,which helps form a robust cathode–electrolyte interphase,effectively suppressing parasitic interface side reactions.Overall,this study highlights the role of VC addi-tives in high-voltage and solid-state LMBs,offering a general yet effective approach for addressing the interfa-cial instability issue through an additive-engineering strategy.