In the paper the extended modelling method with serial sands is used in an experimental research on the erosion patterns at the discharge outlet of a beach Hua-Neng power plant. The theoretical basis for the extended ...In the paper the extended modelling method with serial sands is used in an experimental research on the erosion patterns at the discharge outlet of a beach Hua-Neng power plant. The theoretical basis for the extended modelling method with serial sands is systematically presented in the paper and the method has been successfully employed in the sediment experiment of coastal works. According to the Froude Law, the model is designed to be a normal one with movable bed, the geometric scale lambda(L) = lambda(H) = 15, and three scales of sediment grain size are chosen, i.e., lambda(d1) = 0.207; lambda(d2) = 0.393; and lambda(d3) = 0.656. The median particle diameter of sea beach prototype sand d(50p) = 0.059 mm and the dis-changed water flow of the power plant is 21.7 m(3) / s. Three types of natural sea sands have been chosen as the serial modelling sands to extend the simulation of the prototype, thus replacing the conventional test in which artificial lightweight sands are used. As a result, this method can not only reduce the cost significantly, but also it is an advanced technique easy to use. Upon a series of tests, satisfactory results have been obtained.展开更多
The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecologic...The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.展开更多
In order to investigate the effect of Thiobacillusferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with ThiobaciUus ferrooxidans, were d...In order to investigate the effect of Thiobacillusferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with ThiobaciUus ferrooxidans, were designed and carried out at 30℃. The initial pH of the two solutions was adjusted to 2.5 by dropwise addition of concentrated sulphuric acid. The surfaces of pyrite before exposure to leaching solutions and after exposure to the H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans were observed by scanning electron microscopy (SEM). There were a variety of erosion patterns by Thiobacillusferrooxidans on the bio-leached pyrite surfaces. A conclusion can be drawn that the oxidation of pyrite might have been caused by erosion of the surfaces. Attachment of the bacteria to pyrite surfaces resulted in erosion pits, leading to the oxidation of pyrite. It is possible that the direct mechanism plays the most important role in the oxidation of pyrite. The changes in iron ion concentrations of both the experimental solutions with time suggest that ThiobaciUus ferrooxidans can enhance greatly the oxidation of pyrite.展开更多
Understanding of erosion and accretion patterns over intertidal mudflats during storm periods is vital for the management and sustainable development of coastal areas.This study aimed to investigate the effect of the ...Understanding of erosion and accretion patterns over intertidal mudflats during storm periods is vital for the management and sustainable development of coastal areas.This study aimed to investigate the effect of the 2014 storm Fung-wong on the erosion and accretion patterns of the Nanhui intertidal mudflats in the Yangtze estuary,China,based on field measurements and Delft3D numerical modeling.Results show that prolonged easterly winds during the storm enhance the flood velocity,weaken the ebb velocity,and even change the current direction.The current velocity,wave heights,and bed-level changes increased by 1-1.43 times,2.40-3.88 times,and 2.28-2.70 times than those of normal weather,respectively.The mudflats show a spatial pattern of overall erosion but increasing erosion magnitude from the high(landward)mudflat to the low(seaward)mudflat during the storm.The magnitude of bed-level change increases with increasing wind speed,but the spatial pattern of erosion and accretion remains the same.The main reason for this pattern is the longer submersion duration of the low mudflat compared with the high mudflat,so the hydrodynamic process is longer and stronger,leading to an enhancement in bed shear stress and sediment transport rate.Wind speed increases the hydrodynamic intensity but does not affect on the submersion duration over each part of the intertidal mudflat.This study is helpful to improve the understanding of physical processes during storms on intertidal mudflats and provides a reference for their protection,utilization,and management,as well as for research in related disciplines.展开更多
In the past few decades,ion engines have been widely used in deep-space propulsion and satellite station-keeping.The aim of extending the thruster lifetime is still one of the most important parts during the design st...In the past few decades,ion engines have been widely used in deep-space propulsion and satellite station-keeping.The aim of extending the thruster lifetime is still one of the most important parts during the design stage of ion engine.As one of the core components of ion engine,the grid assembly of ion optic systems may experience long-term ion sputtering in extreme electro-thermal environments,which will eventually lead to its structural and electron-backstreaming failures.In this paper,the current studies of the grid assembly erosion process are systematically analyzed from the aspects of sputtering damage process of grid materials,numerical simulations,and measurements of erosion characteristics of grid assembly.The advantages and disadvantages of various erosion prediction models are highlighted,and the key factors and processes affecting the prediction accuracy of grid assembly erosion patterns are analyzed.Three different types of experimental methods of grid assembly erosion patterns are compared.The analysis in this paper is of great importance for selecting the sputter-resistant grid materials,as well as establishing the erosion models and measurement methods to accurately determine the erosion rate and failure modes of grid assembly.Consequently,the working conditions and structure parameters of ion optic systems could be optimized based on erosion models to promote the ion engine lifetime.展开更多
文摘In the paper the extended modelling method with serial sands is used in an experimental research on the erosion patterns at the discharge outlet of a beach Hua-Neng power plant. The theoretical basis for the extended modelling method with serial sands is systematically presented in the paper and the method has been successfully employed in the sediment experiment of coastal works. According to the Froude Law, the model is designed to be a normal one with movable bed, the geometric scale lambda(L) = lambda(H) = 15, and three scales of sediment grain size are chosen, i.e., lambda(d1) = 0.207; lambda(d2) = 0.393; and lambda(d3) = 0.656. The median particle diameter of sea beach prototype sand d(50p) = 0.059 mm and the dis-changed water flow of the power plant is 21.7 m(3) / s. Three types of natural sea sands have been chosen as the serial modelling sands to extend the simulation of the prototype, thus replacing the conventional test in which artificial lightweight sands are used. As a result, this method can not only reduce the cost significantly, but also it is an advanced technique easy to use. Upon a series of tests, satisfactory results have been obtained.
基金supported by the National Natural Science Foundation of China (41602205, 42293261)the China Geological Survey Program (DD20189506, DD20211301)+2 种基金the Special Investigation Project on Science and Technology Basic Resources of the Ministry of Science and Technology (2021FY101003)the Central Guidance for Local Scientific and Technological Development Fund of 2023the Project of Hebei University of Environmental Engineering (GCY202301)
文摘The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.
基金supported by the National Natural Science Foundation of China(grant 40573001)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20050284043 and No.20050284044).
文摘In order to investigate the effect of Thiobacillusferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with ThiobaciUus ferrooxidans, were designed and carried out at 30℃. The initial pH of the two solutions was adjusted to 2.5 by dropwise addition of concentrated sulphuric acid. The surfaces of pyrite before exposure to leaching solutions and after exposure to the H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans were observed by scanning electron microscopy (SEM). There were a variety of erosion patterns by Thiobacillusferrooxidans on the bio-leached pyrite surfaces. A conclusion can be drawn that the oxidation of pyrite might have been caused by erosion of the surfaces. Attachment of the bacteria to pyrite surfaces resulted in erosion pits, leading to the oxidation of pyrite. It is possible that the direct mechanism plays the most important role in the oxidation of pyrite. The changes in iron ion concentrations of both the experimental solutions with time suggest that ThiobaciUus ferrooxidans can enhance greatly the oxidation of pyrite.
基金provided by the Natural Science Foundation of China(Grant number:42076170,42176164)the Key Laboratory of Coastal Salt Marsh Ecosystems and Resources,Ministry of Natural Resources(Grant number:KLCSMERMNR2021108)Jiangsu Special Program for Science and Technology Innovation(Grant number:JSZRHYKJ202106).
文摘Understanding of erosion and accretion patterns over intertidal mudflats during storm periods is vital for the management and sustainable development of coastal areas.This study aimed to investigate the effect of the 2014 storm Fung-wong on the erosion and accretion patterns of the Nanhui intertidal mudflats in the Yangtze estuary,China,based on field measurements and Delft3D numerical modeling.Results show that prolonged easterly winds during the storm enhance the flood velocity,weaken the ebb velocity,and even change the current direction.The current velocity,wave heights,and bed-level changes increased by 1-1.43 times,2.40-3.88 times,and 2.28-2.70 times than those of normal weather,respectively.The mudflats show a spatial pattern of overall erosion but increasing erosion magnitude from the high(landward)mudflat to the low(seaward)mudflat during the storm.The magnitude of bed-level change increases with increasing wind speed,but the spatial pattern of erosion and accretion remains the same.The main reason for this pattern is the longer submersion duration of the low mudflat compared with the high mudflat,so the hydrodynamic process is longer and stronger,leading to an enhancement in bed shear stress and sediment transport rate.Wind speed increases the hydrodynamic intensity but does not affect on the submersion duration over each part of the intertidal mudflat.This study is helpful to improve the understanding of physical processes during storms on intertidal mudflats and provides a reference for their protection,utilization,and management,as well as for research in related disciplines.
基金co-supported by the National Key R&D Program of China(No.2022YFB3403500)the National Natural Science Foundation of China(No.NSFC52202460)the China Postdoctoral Science Foundation(Nos.2021M690392,2021TQ0036,and 2023TQ0031)。
文摘In the past few decades,ion engines have been widely used in deep-space propulsion and satellite station-keeping.The aim of extending the thruster lifetime is still one of the most important parts during the design stage of ion engine.As one of the core components of ion engine,the grid assembly of ion optic systems may experience long-term ion sputtering in extreme electro-thermal environments,which will eventually lead to its structural and electron-backstreaming failures.In this paper,the current studies of the grid assembly erosion process are systematically analyzed from the aspects of sputtering damage process of grid materials,numerical simulations,and measurements of erosion characteristics of grid assembly.The advantages and disadvantages of various erosion prediction models are highlighted,and the key factors and processes affecting the prediction accuracy of grid assembly erosion patterns are analyzed.Three different types of experimental methods of grid assembly erosion patterns are compared.The analysis in this paper is of great importance for selecting the sputter-resistant grid materials,as well as establishing the erosion models and measurement methods to accurately determine the erosion rate and failure modes of grid assembly.Consequently,the working conditions and structure parameters of ion optic systems could be optimized based on erosion models to promote the ion engine lifetime.