期刊文献+

Experimental Research on the Erosion Pattern and Protection Using the Extended Modelling Method

Experimental Research on the Erosion Pattern and Protection Using the Extended Modelling Method
在线阅读 下载PDF
导出
摘要 In the paper the extended modelling method with serial sands is used in an experimental research on the erosion patterns at the discharge outlet of a beach Hua-Neng power plant. The theoretical basis for the extended modelling method with serial sands is systematically presented in the paper and the method has been successfully employed in the sediment experiment of coastal works. According to the Froude Law, the model is designed to be a normal one with movable bed, the geometric scale lambda(L) = lambda(H) = 15, and three scales of sediment grain size are chosen, i.e., lambda(d1) = 0.207; lambda(d2) = 0.393; and lambda(d3) = 0.656. The median particle diameter of sea beach prototype sand d(50p) = 0.059 mm and the dis-changed water flow of the power plant is 21.7 m(3) / s. Three types of natural sea sands have been chosen as the serial modelling sands to extend the simulation of the prototype, thus replacing the conventional test in which artificial lightweight sands are used. As a result, this method can not only reduce the cost significantly, but also it is an advanced technique easy to use. Upon a series of tests, satisfactory results have been obtained. In the paper the extended modelling method with serial sands is used in an experimental research on the erosion patterns at the discharge outlet of a beach Hua-Neng power plant. The theoretical basis for the extended modelling method with serial sands is systematically presented in the paper and the method has been successfully employed in the sediment experiment of coastal works. According to the Froude Law, the model is designed to be a normal one with movable bed, the geometric scale lambda(L) = lambda(H) = 15, and three scales of sediment grain size are chosen, i.e., lambda(d1) = 0.207; lambda(d2) = 0.393; and lambda(d3) = 0.656. The median particle diameter of sea beach prototype sand d(50p) = 0.059 mm and the dis-changed water flow of the power plant is 21.7 m(3) / s. Three types of natural sea sands have been chosen as the serial modelling sands to extend the simulation of the prototype, thus replacing the conventional test in which artificial lightweight sands are used. As a result, this method can not only reduce the cost significantly, but also it is an advanced technique easy to use. Upon a series of tests, satisfactory results have been obtained.
出处 《China Ocean Engineering》 SCIE EI 1997年第4期441-448,共8页 中国海洋工程(英文版)
关键词 extended modelling method discharge outlet erosion pattern beach protection extended modelling method discharge outlet erosion pattern beach protection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部