Objective: To explore the protective effect of camellia oil against H2O2-induced oxidative stress injury in rat H9C2 cardiomyocytes. Methods: CCK8 method was used to detect the cell survival rate of H9C2 cardiomyocyte...Objective: To explore the protective effect of camellia oil against H2O2-induced oxidative stress injury in rat H9C2 cardiomyocytes. Methods: CCK8 method was used to detect the cell survival rate of H9C2 cardiomyocytes treated with different concentrations of H2O2. Normal cultured cells were used as the blank control group, and the cells were treated with 200 μmol/L H2O2 for 24 h. An oxidative stress injury model was constructed as the model group. The cells were pretreated with 1%, 0.1% and 0.01% camellia oil for 24 h, and then H2O2 was added for 24 h as the experimental group. The β-galactosidase senescence staining assay, mitochondrial membrane potential assay, EdU cell proliferation staining assay and scratch assay were used to observe the changes of cell senescence, mitochondrial membrane potential, proliferation, apoptosis and migration in each group. The superoxide dismutase (SOD) activity, lactate dehydrogenase (LDH) activity, and malondialdehyde (MDA) content of the cells in each group were detected by using the kit. Results: The cell viability of H9C2 cardiomyocytes treated with different concentrations of H2O2 was inhibited and positively correlated with the concentration of H2O2 (P<0.01). Compared with the blank control group, the positive rate of cell senescence, MDA content and LDH activity increased in the H2O2 model group (P<0.01);mitochondrial membrane potential, cellular value-added rate, migration rate and SOD activity decreased (P<0.01). Compared with the H2O2 model group, the positive rate of cellular senescence (P<0.01 or P<0.05), MDA content and LDH activity decreased (P< 0.01 or P<0.05);mitochondrial membrane potential increased, cell proliferation rate and migration rate increased (P<0.01 or P<0.05) in the experimental group. Conclusion: Camellia oil can significantly inhibit oxidative stress injury in H9C2 cells and exert cardiomyocyte protective effects.展开更多
Pd/Co_(2)MnSi(CMS)/Co/Pd multilayer films were designed based on the idea of combining highly spin-polarized materials with strong perpendicular magnetic anisotropy(PMA)films.The PMA of Pd/CMS/Co/Pd multilayer films w...Pd/Co_(2)MnSi(CMS)/Co/Pd multilayer films were designed based on the idea of combining highly spin-polarized materials with strong perpendicular magnetic anisotropy(PMA)films.The PMA of Pd/CMS/Co/Pd multilayer films was studied by optimizing the growth conditions and thickness of each film layer.The optimal structure of the multilayer films was Pd(6 nm)/CMS(5 nm)/Co(2 nm)/Pd(1 nm).Its abnormal Hall resistance(R_(Hall)),coercivity(H_(c))and effective magnetic anisotropy constant(Keff)are 0.08Ω,284 Oe and 1.36 Merg/cm^(3),respectively,which are 100%,492%,and 183%higher than the corresponding values(0.04Ω,48 Oe,and 0.48 Merg/cm^(3))of the Pd(6 nm)/Co(1 nm)/Pd(3 nm)trilayer films.The analysis shows that the increases of the above values are the result of the Pd/CMS interface effect and CMS/Co interface ferromagnetic(FM)coupling,and that it is closely related to the thickness of each film layer in the multilayer films and the growth conditions of the multilayer films.展开更多
To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the ...To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.展开更多
A study evaluating the relationship between porosity and permeability coefficient for pervious concrete (PC) is presented. In addition, the effect of mixture design parameters particularly, water-to-cement ratio (W/C)...A study evaluating the relationship between porosity and permeability coefficient for pervious concrete (PC) is presented. In addition, the effect of mixture design parameters particularly, water-to-cement ratio (W/C) and size of aggregate on the permeability coefficient of PC was investigated. The PC mixtures were made with 4 range of W/C and 2 range size of aggregate. PC mixes were made from each aggregate and were tested. The results showed that the W/C and aggregate size are key parameters which significantly affect the characteristic performance of PC. Permeability coefficient of coarse pervious concrete (CPC) is bigger than fine pervious concrete (FPC) and the porosity of CPC are bigger than porosity of FPC. A regression model (RM) along with analysis of variance (ANOVA) was conducted to study the significance of porosity distribution on permeability coefficient of PC. The statistical model developed in this study can facilitate prediction permeability coefficient of CPC and FPC as the sustainable pavements.展开更多
The charge transfer rate coefficients for reactions of Sc^(3+)with N_(2) and H_(2) have been measured at the mean collision energy of 4.2eV.The rate coefficients are derived from the decay rate of ion signals by using...The charge transfer rate coefficients for reactions of Sc^(3+)with N_(2) and H_(2) have been measured at the mean collision energy of 4.2eV.The rate coefficients are derived from the decay rate of ion signals by using ion storage in a radio-frequency ion trap.The rate coefficients are 8.18(0.18)×10^(-10)cm^(3)·s^(-1) at Tequiv≈1.26×10^(4)K for Sc^(3+) with N_(2) and 1.44(0.39)×10^(-9)cm^(3)·s^(-1) at Tequiv>≈1.67×10^(3) K for Sc^(3+) with H_(2),respectively.Both results are comparable with the Langevin rate coefficients.展开更多
This study investigated the interactive effects of Hepatitis C virus on human cells using the contact angle approach. The methodology involves the use of sessile drop approach to determine the contact angle formed on ...This study investigated the interactive effects of Hepatitis C virus on human cells using the contact angle approach. The methodology involves the use of sessile drop approach to determine the contact angle formed on the infected and uninfected blood cells in the presences of glycerin as the probe liquid. It was observed that the presence of the virus in the human blood cells depleted the immune system of infected cells giving rise to a decreased CD4 count on the average of 514.5 ± 243.10 when compared with the uninfected cells CD4 count of 1267.2 ± 368.27. The measurement of contact angle also unveils that among the blood components separated in the course of the experiment, the white blood cell is the principal target of the virus with the highest average contact angle of 63.4 ± 3.20 while the uninfected white blood cells have a lower contact angle of 48.5 ± 2.75. The result of the measured contact angle was used for MATLAB computation to determine the surface energy, force of adhesion and the Hamaker coefficient. Response surface methodology was also employed in this study to visualize the viral impact on the blood cells as well as generating model equations for prediction of the interaction between the virus and the blood cells. Infected surfaces on the average have higher values of Hamaker coefficient than uninfected surfaces. It was discovered that an increase in the contact angles causes a significant increase in Hamaker coefficient with a corresponding decrease in the CD4 counts on the infected surfaces. This increase is attributed to the presence of the HCV virus in the infected samples and the highest value was observed in the white blood cell component. Computation of the combined negative Hamaker coefficient revealed that there exists a possibility of separating the virus from the human lymphocyte, hence a negative value of the A132 of the infected sample was seen to be −0.150 × 10−18 mJ/m2 (−0.150 × 10−25 J). This is in agreement with the value reported in literature when an alternative method to contact angle was used (ultraviolent spectrophotometer approach) to investigate HIV infected human cells. The combined negative Hamaker coefficient of −0.281 × 10−25 J was obtained in that study. Both results have unveiled the possibility of applying the concept of combined negative Hamaker coefficient as a means of separating the virus from the lymphocytes. It therefore implies that additives in the form of drug(s) to the serum (as an intervening medium) which could alter the surface energy of the serum to a value of ≥−0.150 × 10−25 J can have the capability of totally isolating the virus from the lymphocytes.展开更多
The dynamics of C+H_(2)→H+CH reaction is theoretically studied using the quasiclassical trajectory and quantum mechanical wave packet methods.The analysis of reaction probabilities,integral cross sections,and rate co...The dynamics of C+H_(2)→H+CH reaction is theoretically studied using the quasiclassical trajectory and quantum mechanical wave packet methods.The analysis of reaction probabilities,integral cross sections,and rate coefficients reveal the essential Coriolis coupling effects in the quantum mechanical wave packet calculations.The calculated polarizationdependent differential cross section,P(θ_(r))and P(Φ_(r))show that the j'of product rotational angular momentum is not only aligned along the y axis and the direction of the vector x+z,but also strongly oriented along the positive y axis.展开更多
基金National Natural Science Foundation of China(No.82160597)Guangxi Natural Science Foundation Project(No.2020GXNSFAA159148)。
文摘Objective: To explore the protective effect of camellia oil against H2O2-induced oxidative stress injury in rat H9C2 cardiomyocytes. Methods: CCK8 method was used to detect the cell survival rate of H9C2 cardiomyocytes treated with different concentrations of H2O2. Normal cultured cells were used as the blank control group, and the cells were treated with 200 μmol/L H2O2 for 24 h. An oxidative stress injury model was constructed as the model group. The cells were pretreated with 1%, 0.1% and 0.01% camellia oil for 24 h, and then H2O2 was added for 24 h as the experimental group. The β-galactosidase senescence staining assay, mitochondrial membrane potential assay, EdU cell proliferation staining assay and scratch assay were used to observe the changes of cell senescence, mitochondrial membrane potential, proliferation, apoptosis and migration in each group. The superoxide dismutase (SOD) activity, lactate dehydrogenase (LDH) activity, and malondialdehyde (MDA) content of the cells in each group were detected by using the kit. Results: The cell viability of H9C2 cardiomyocytes treated with different concentrations of H2O2 was inhibited and positively correlated with the concentration of H2O2 (P<0.01). Compared with the blank control group, the positive rate of cell senescence, MDA content and LDH activity increased in the H2O2 model group (P<0.01);mitochondrial membrane potential, cellular value-added rate, migration rate and SOD activity decreased (P<0.01). Compared with the H2O2 model group, the positive rate of cellular senescence (P<0.01 or P<0.05), MDA content and LDH activity decreased (P< 0.01 or P<0.05);mitochondrial membrane potential increased, cell proliferation rate and migration rate increased (P<0.01 or P<0.05) in the experimental group. Conclusion: Camellia oil can significantly inhibit oxidative stress injury in H9C2 cells and exert cardiomyocyte protective effects.
基金Project supported by Shandong Provincial Natural Science Foundation,China(Grant No.ZR2022ME059)。
文摘Pd/Co_(2)MnSi(CMS)/Co/Pd multilayer films were designed based on the idea of combining highly spin-polarized materials with strong perpendicular magnetic anisotropy(PMA)films.The PMA of Pd/CMS/Co/Pd multilayer films was studied by optimizing the growth conditions and thickness of each film layer.The optimal structure of the multilayer films was Pd(6 nm)/CMS(5 nm)/Co(2 nm)/Pd(1 nm).Its abnormal Hall resistance(R_(Hall)),coercivity(H_(c))and effective magnetic anisotropy constant(Keff)are 0.08Ω,284 Oe and 1.36 Merg/cm^(3),respectively,which are 100%,492%,and 183%higher than the corresponding values(0.04Ω,48 Oe,and 0.48 Merg/cm^(3))of the Pd(6 nm)/Co(1 nm)/Pd(3 nm)trilayer films.The analysis shows that the increases of the above values are the result of the Pd/CMS interface effect and CMS/Co interface ferromagnetic(FM)coupling,and that it is closely related to the thickness of each film layer in the multilayer films and the growth conditions of the multilayer films.
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Aeronautical Science Foundation of China(No.2012ZB52026)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘To make better use of 2.5D C/SiC composites in industry, it is necessary to understand the mechanical properties. A finite element model'of 2.5D composites is established, by considering the fiber undulation and the porosity in 2.5D C/SiC composites. The fiber direction of warp is defined by cosine function to simulate the undulation of warp, and based on uniform strain assumption, analytical model of the elastic modulus and coefficient of thermal expansion (CTE) for 2.5D C/SiC composites were established by using dual- scale model. The result is found to correlate reasonably well with the predicted results and experimental results. The parametric study also demonstrates the effects of the fiber volume fraction, distance of warp yarn, and porosity in micro-scale on the mechanical properties and the coefficients of thermal expansion.
文摘A study evaluating the relationship between porosity and permeability coefficient for pervious concrete (PC) is presented. In addition, the effect of mixture design parameters particularly, water-to-cement ratio (W/C) and size of aggregate on the permeability coefficient of PC was investigated. The PC mixtures were made with 4 range of W/C and 2 range size of aggregate. PC mixes were made from each aggregate and were tested. The results showed that the W/C and aggregate size are key parameters which significantly affect the characteristic performance of PC. Permeability coefficient of coarse pervious concrete (CPC) is bigger than fine pervious concrete (FPC) and the porosity of CPC are bigger than porosity of FPC. A regression model (RM) along with analysis of variance (ANOVA) was conducted to study the significance of porosity distribution on permeability coefficient of PC. The statistical model developed in this study can facilitate prediction permeability coefficient of CPC and FPC as the sustainable pavements.
基金Supported by the National Natural Science Foundation of China under Grant No.19804015.
文摘The charge transfer rate coefficients for reactions of Sc^(3+)with N_(2) and H_(2) have been measured at the mean collision energy of 4.2eV.The rate coefficients are derived from the decay rate of ion signals by using ion storage in a radio-frequency ion trap.The rate coefficients are 8.18(0.18)×10^(-10)cm^(3)·s^(-1) at Tequiv≈1.26×10^(4)K for Sc^(3+) with N_(2) and 1.44(0.39)×10^(-9)cm^(3)·s^(-1) at Tequiv>≈1.67×10^(3) K for Sc^(3+) with H_(2),respectively.Both results are comparable with the Langevin rate coefficients.
文摘This study investigated the interactive effects of Hepatitis C virus on human cells using the contact angle approach. The methodology involves the use of sessile drop approach to determine the contact angle formed on the infected and uninfected blood cells in the presences of glycerin as the probe liquid. It was observed that the presence of the virus in the human blood cells depleted the immune system of infected cells giving rise to a decreased CD4 count on the average of 514.5 ± 243.10 when compared with the uninfected cells CD4 count of 1267.2 ± 368.27. The measurement of contact angle also unveils that among the blood components separated in the course of the experiment, the white blood cell is the principal target of the virus with the highest average contact angle of 63.4 ± 3.20 while the uninfected white blood cells have a lower contact angle of 48.5 ± 2.75. The result of the measured contact angle was used for MATLAB computation to determine the surface energy, force of adhesion and the Hamaker coefficient. Response surface methodology was also employed in this study to visualize the viral impact on the blood cells as well as generating model equations for prediction of the interaction between the virus and the blood cells. Infected surfaces on the average have higher values of Hamaker coefficient than uninfected surfaces. It was discovered that an increase in the contact angles causes a significant increase in Hamaker coefficient with a corresponding decrease in the CD4 counts on the infected surfaces. This increase is attributed to the presence of the HCV virus in the infected samples and the highest value was observed in the white blood cell component. Computation of the combined negative Hamaker coefficient revealed that there exists a possibility of separating the virus from the human lymphocyte, hence a negative value of the A132 of the infected sample was seen to be −0.150 × 10−18 mJ/m2 (−0.150 × 10−25 J). This is in agreement with the value reported in literature when an alternative method to contact angle was used (ultraviolent spectrophotometer approach) to investigate HIV infected human cells. The combined negative Hamaker coefficient of −0.281 × 10−25 J was obtained in that study. Both results have unveiled the possibility of applying the concept of combined negative Hamaker coefficient as a means of separating the virus from the lymphocytes. It therefore implies that additives in the form of drug(s) to the serum (as an intervening medium) which could alter the surface energy of the serum to a value of ≥−0.150 × 10−25 J can have the capability of totally isolating the virus from the lymphocytes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904394 and 12004216)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QA064)。
文摘The dynamics of C+H_(2)→H+CH reaction is theoretically studied using the quasiclassical trajectory and quantum mechanical wave packet methods.The analysis of reaction probabilities,integral cross sections,and rate coefficients reveal the essential Coriolis coupling effects in the quantum mechanical wave packet calculations.The calculated polarizationdependent differential cross section,P(θ_(r))and P(Φ_(r))show that the j'of product rotational angular momentum is not only aligned along the y axis and the direction of the vector x+z,but also strongly oriented along the positive y axis.