The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the...The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases.In addition, the DC voltage affects the time required for the positive charge filaments to decay.The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.展开更多
In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with ...In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with an intensified charge-coupled device and photomultiplier tubes.The results indicate that the bright and dark concentric-ring pattern is composed of three concentric-ring sublattices.These are bright concentric-ring structures,dark concentric-ring structures and wider concentric-ring structures,respectively.The bright concentric-ring structures and dark concentricring structures are alternately distributed.The bright concentric-ring structures are located at the centre of the wider concentric-ring structures.The wider concentric-ring structures first form from the outer edge and gradually develop to the centre.The essence of all three concentric-ring structures is the individual discharge filaments.The optical emission spectra of different sublattices are acquired and analysed.It is found that the plasma parameters of the three concentricring sublattices are different.Finally,the formation mechanism of the bright and dark concentricring pattern is discussed.展开更多
Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio a...Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.展开更多
Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness o...Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow control by microsecond dielectric barrier discharge(μs-DBD), and by nanosecond dielectric barrier discharge(NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, theμs-DBD is implemented on an unmanned aerial vehicle(UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87 m, and the airspeed is no less than 30 m/s. The flight data, static pressure data,and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3° and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons,which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application.展开更多
The Irtysh River is an intemational river partially joining the territories of China, Kazakhstan, and Russia. Cascade reservoirs have been constructed in the upper reaches of the river and their effects on the seasona...The Irtysh River is an intemational river partially joining the territories of China, Kazakhstan, and Russia. Cascade reservoirs have been constructed in the upper reaches of the river and their effects on the seasonal discharge of the middle and lower reaches were analyzed considering the mean and dispersion of the seasonal discharge. The Lepage test, which is a nonparametric, two-sample test for detecting location and dispersion, was used to measure the significance of difference between the pre-dam and post-dam seasonal discharge. The results show that the reservoirs' effects on the seasonal discharge varied with the season. In the middle reaches of the river, the summer and autumn discharge decreased significantly and their inter-annual variabilities also decreased significantly. The summer and autumn precipitation over the Irtysh River Basin changed little before and after the operation of the reservoir, which indicates that the discharge changes mainly due to water storage of the reservoirs. The reservoirs store water in summer and autumn and store more water in a wet year, which leads to the reduction of the mean and dispersion of the summer and autumn discharge. The winter discharge increased significantly because the reservoirs released water for power generation. The spring discharge changed slightly. In the lower reaches, only the winter discharge increased significantly, and the other seasonal discharge changed slightly. The reservoirs' effects on the seasonal discharge are more significant in the middle reaches than in the lower reaches.展开更多
Partial discharge test on a transformer is carried out according to the items in IEC 60. During the test, unproved measuring system is calibrated by proved system at a voltage no less than 50% the rated testing voltag...Partial discharge test on a transformer is carried out according to the items in IEC 60. During the test, unproved measuring system is calibrated by proved system at a voltage no less than 50% the rated testing voltage. The result is then extrapolated linearly, leading to an error related to the distribution of stray capacitance, which varies with the testing frequency, especially to large transformers. In this paper a factor, named the capacitive rise fact, is introduced to assess the rise. The factor can be adjusted to some extent by changing the reactance that is connected to the LV side of the testing circuit to lower the capacity of the power source. However, the factor changes when the voltage divider on the high voltage side is removed after the voltage ratio has been calculated, and a great error is resulted under unfavorable conditios.展开更多
The effect of dielectric barrier discharge(DBD)on the interfacial mechanical property of polypropylene fiber reinforced cement is investigated with the aid of single fiber pull out test.The result shows that the DBD t...The effect of dielectric barrier discharge(DBD)on the interfacial mechanical property of polypropylene fiber reinforced cement is investigated with the aid of single fiber pull out test.The result shows that the DBD treatment improved the adhesion between the PP fiber and the surrounding cement matrix considerably without serious aging.Keywords:dielectric barrier discharge,single fiber pull-out test.展开更多
Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were...Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were depicted. Variations of the aforementioned four parameters are differently obvious. Ending criteria of charge and discharge of Ni/MH batteries are discussed on the basis of the curves. Voltage, capacity and temperature of a battery can be used as ending criteria during charge. When discharge takes place, voltage, capacity and internal resistance can be chosen as ending criteria. As a whole, capacity is more suitable for being used as ending criteria of charge and discharge than the other three parameters. At last, the capacity of a battery is recommended to be ending criteria of charge and discharge. The conclusions will provide references to different capacity Ni/MH batteries for electric vehicles.展开更多
Cheongpyeong Dam was built in 1943 for the purpose of power generation. Since its construction, discharge flow data based on a theoretical formula have been used to the present times and this leads to a problem of acc...Cheongpyeong Dam was built in 1943 for the purpose of power generation. Since its construction, discharge flow data based on a theoretical formula have been used to the present times and this leads to a problem of accurate discharge flow information not being available. In particular, Cheongpyeong Dam has been partially repaired and modified to maintain the dam structure over a long period of time and is not being properly reflected with changes at the downstream of the river caused by river improvement projects and sedimentation in reservoir. With a goal to improve Cheongpyeong Dam discharge flow calculation, this study aimed at verifying discharge capability and discharge flow by damper opening in relation to the previously suggested discharge flow through a hydraulic model test based on an accurate reproduction of the dam structure and surrounding topographies as in the present conditions. In this study, a hydraulic model test was conducted to examine the discharge flow of Cheongpyeong Dam. In addition, a comparative examination was carried out against the existing discharge flow proposed using theoretical equations. As a verification of the discharge flow of Cheongpyeong Dam, discharge flows in all sluices and a single sluice were examined. Then, the impact of sluice interference caused by the dam structure consisting with 24 sluices was investigated. As a result of the examination, it was found that the difference between discharge flow calculated using the existing theoretical equations and discharge flow derived from the hydraulic model test was insignificant. Based on the results of hydraulic model test, a formula to estimate stage-discharge flow at a sluice was derived and suggested.展开更多
Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft su...Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft suction box and a siphon-type discharge passage with a vacuum breaker as the cutoff device was developed , which possesses such advantages as simple structure , reliable cutoff , and high energy performance.Taking some pumping stations as the case studies , in the light of the specified operation conditions , the hydraulic optimal design of the shaft-type tubular pumping system was determined and the optimized shape of the system was recommended.The performance prediction based on the computational fluid dynamics methodology was determined and the model test verification was conducted.The results show that the predicted data agree with the experimental head and efficiency so that both methods can be used to determine the performance of a real pumping station.Finally , the in-situ measurements of a pumping station during the commissioning period further verified that the shaft-type tubular pumping station with a siphon discharge passage is of higher efficiency , more reliable and stable.展开更多
By combining the results of prototype observation of flood discharge atomization at the Wujiangdu Hydropower Station, and by adopting the serial model test method, the model scale effect was examined, the influences o...By combining the results of prototype observation of flood discharge atomization at the Wujiangdu Hydropower Station, and by adopting the serial model test method, the model scale effect was examined, the influences of the Reynolds and Weber numbers of water flow on the rain intensity of flood discharge atomization were analyzed and a rain intensity conversion relation was established. It is demonstrated that the level of atomization follows the geometric similarity relations and it is possible to ignore the influence of the surface tension of the flow when the Weber number is greater than 500. Despite limitations such as incomplete data sets, it is undoubtedly helpful to study the scale effect of atomization flow, and it is beneficial to identify the rules of the model test results in order to extrapolate to prototype prediction.展开更多
In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiat...In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiated by a non- focused electron beam. Electron scattering and transport processes in the sample are simulated with the Monte Carlo and the finite-different time-domain (FDTD) methods, respectively. The properties of charge and discharge processes are presented by the evolution of internal currents, charge quantity, surface potential, and discharge time. Internal charge accumulation in the sample may reach saturation by primary electron (PE) irradiation providing the charge duration is enough. Internal free electrons will run off to the ground in the form of leakage current due to charge diffusion and drift during the discharge process after irradiation, while trapped electrons remain. The negative surface potential determined by the charging quantity decreases to its saturation in the charge process, and then increases in the discharge process. A larger thickness of the PMMA film will result in greater charge amount and surface potential in charge saturation and in final discharge state, while the electron mobility of the material has little effects on the final discharge state. Moreover, discharge time is less for smaller thickness or larger electron mobility. The presented results can be helpful for estimating and weakening the charging of insulating samples especially under the intermittent electron beam irradiation in related surface analysis or measurement.展开更多
Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density ...Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.展开更多
In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influenc...In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influence, a surface charge measurement system was constructed, and three types of discharge, i.e. surface discharge, and low intensity and high intensity coronas, were introduced to cause surface charge accumulation. The decay behavior of surface charges after different types of discharge was obtained at various temperatures. It was found that total surface charges monotonically decreased with time, and the decay rate became larger as temperature increased. However, after a surface discharge or a high intensity corona, surface charge density in the local area appeared to fluctuate during the decay process. Compared with this, the fluctuation of surface charge density was not observed after a low intensity corona. The mechanisms of surface charge accumulation and decay were analysed. Moreover, a microscopic physical model involving charge production, accumulation, and decay was proposed so that the experimental results could be explained.展开更多
Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap swit...Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.展开更多
To investigate the effect of the rib structure on the discharge characteristics of the plasma display panel, the potential distribution, particles density distribution and ions incident angle distribution were examine...To investigate the effect of the rib structure on the discharge characteristics of the plasma display panel, the potential distribution, particles density distribution and ions incident angle distribution were examined by simulation of a two-dimensional particle-in-cell/Monte Carlo collision, with two kinds of rib structure: the stripe rib structure and the Waffle rib structure. The results showed that the distribution of electric potential at the corner of the discharge cell was almost the same for these two rib structures while in the centre there was a difference between these two rib structures. The striation phenomenon could be observed in both cases. The distribution of density also indicated that the striation phenomenon was accompanied by the firing of discharge, and the Waffle rib structure might reduce the density humps. In the cell with a stripe rib structure, the profiles of the surface charge density along the sustained dielectric layer presented a better fluctuating distribution than that in the cell with a Waffle rib structure. The spatial potential and particle density in the discharge bulk showed that the Waffle ribs could weaken the striation phenomenon, which could be explained by the decrease in the particle numbers in the discharge cell. The simulation results of the ion incident angle showed that most ions impacted the sustained dielectric layer in the normal stripe rib cell with an incident angle in the range of 6° to 19° while with the Waffle rib structure the incident angle of most ions was in the range of 4° to 19°. The Waffle rib structure did not affect the angle distribution of incident ions significantly.展开更多
The corona discharges provide an efficient way to induce precipitation or eliminate fog by increasing ion density in the open air.In this paper,one bipolar corona discharge array(positive and negative high voltage cou...The corona discharges provide an efficient way to induce precipitation or eliminate fog by increasing ion density in the open air.In this paper,one bipolar corona discharge array(positive and negative high voltage coupled simultaneously)which can generate high densities of positive and negative ions is developed.The comparison between bipolar corona discharge array and unipolar corona discharge array(positive or negative coupled only)indicates that bipolar corona discharge array can generate~3 times higher ion density than unipolar corona discharge array.More charged aerosols are produced through collisions between ions and aerosols.The collision rate between aerosols is increased substantially by the attractive forces between positively and negatively charged aerosols.The deposition of aerosols induced by bipolar discharges is 25.7%higher than that of unipolar discharges at the humidity super-saturation condition.Therefore,the bipolar corona discharge system is a new option for the large scale ion sources used for artificial weather modification.展开更多
Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and co...Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and compared with that of traditional Ni(OH)2. The results show that the spherical nickel hydroxide consists of (Ni(OH)2) spheres with a reticulate structure of platelet-like, which is almost arranged radially and the crystalline grains intervene and connect with each other to form a three-dimensional net. The spherical Ni(OH)2 particle is full of pores, crannies between cleave planes. It is supposed that this structure is beneficial to the structural stability for the spherical particles during the charge/discharge processes and can improve the cycle life of the electrode; the pores and the crannies in spherical particles can shorten the proton diffusion distance and speed its velocity, which may result in that the local polarization is lowered. The electrochemical performances of the spherical Ni(OH)2 are improved by enhancing the conducting properties of the crystalline lattice due to its quick proton diffusion.展开更多
Theoretical study on the electronic structures and related properties of 2,2,6,6-tetramethyl- l-piperidinyloxy (TEMPO) and its cationic lipid derivates in the charge/discharge processes has been carried out using th...Theoretical study on the electronic structures and related properties of 2,2,6,6-tetramethyl- l-piperidinyloxy (TEMPO) and its cationic lipid derivates in the charge/discharge processes has been carried out using the density functional theory (DFT) at the (U)B3LYP/6-31G(d,p) or 6-31+G(d,p) level. The changes and regularities of geometric and electronic properties of these compounds in the charge/discharge processes were revealed in detail. The compu- tational results show that the substitute group plays a very important role in the electronic structures and related properties of TEMPOs during the charge/discharge processes. It is very interesting to find that after getting an electron, TEMPO is more stable in singlet state but the lipid is more stable in triplet state. For TEMPO, both the charge and the discharge processes greatly influence the electronic properties of N and O atoms of the radical part. For the cationic lipid, the discharge process mainly influences the pyridinium head and the charge process mainly influences the free radical head. Moreover, the solvent effect plays an important role in some bond lengths and the charge population of the free radical head. In addition, the UV-Vis absorption spectra simulated using TDDFT at the 6-31G(d,p) with the experimental ones. of TEMPO and the lipid were calculated and or 6-31+G(d,p) level, in satisfying agreement展开更多
基金supported by National Natural Science Foundation of China (Nos. 51777026 and 11705075)。
文摘The surface charge characteristics in a three-electrode surface dielectric barrier discharge(SDBD)are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases.In addition, the DC voltage affects the time required for the positive charge filaments to decay.The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.
基金supported by National Natural Science Foundation of China(No.12075075)the Natural Science Foundation of Hebei Province,China(Nos.2020201016,A2018201154,A2023201012)Scientific Research and Innovation Team of Hebei University(No.IT2023B03)。
文摘In this work,a bright and dark concentric-ring pattern is reported in a dielectric barrier discharge for the first time.The spatiotemporal dynamics of the bright and dark concentric-ring pattern are investigated with an intensified charge-coupled device and photomultiplier tubes.The results indicate that the bright and dark concentric-ring pattern is composed of three concentric-ring sublattices.These are bright concentric-ring structures,dark concentric-ring structures and wider concentric-ring structures,respectively.The bright concentric-ring structures and dark concentricring structures are alternately distributed.The bright concentric-ring structures are located at the centre of the wider concentric-ring structures.The wider concentric-ring structures first form from the outer edge and gradually develop to the centre.The essence of all three concentric-ring structures is the individual discharge filaments.The optical emission spectra of different sublattices are acquired and analysed.It is found that the plasma parameters of the three concentricring sublattices are different.Finally,the formation mechanism of the bright and dark concentricring pattern is discussed.
基金the National Natural Science Foun-dation of China(Grant Nos.12020101005,11975067,and 12347131)the Fundamental Research Funds for the Cen-tral Universities(Grant No.DUT24BS069).
文摘Simulations are conducted on capacitively coupled Ar/O_(2)mixed gas discharges employing a one-dimensional fluid coupled with an electron Monte Carlo(MC)model.The research explores the impact of different O_(2)ratio and pressures on the discharge characteristics of Ar/O_(2)plasma.At a fixed Ar/O_(2)gas ratio,with the increasing pressure,higher ion densities,as well as a slight increase in electron density in the bulk region can be observed.The discharge remains dominated by the drift-ambipolar(DA)mode,and the flux of O(3P)at the electrode increases with the increasing pressure due to higher background gas density,while the fluxes of O(1D)and Ardecrease due to the pronounced loss rate.With the increasing proportion of O_(2),a change in the dominant discharge mode from a mode to DA mode can be detected,and the O_(2)-associated charged particle densities are significantly increased.However,Ar+density shows a trend of increasing and then decreasing,while for neutral fluxes at the electrode,Arflux decreases,and O(3P)flux increases with the reduced Ar gas proportion,while trends in O(1D)flux show slight differences.The evolution of the densities of the charged particle and the neutral fluxes under different discharge parameters are discussed in detail using the ionization characteristics as well as the transport properties.Hopefully,more comprehensive understanding of Ar/O_(2)discharge characteristics in this work will provide a valuable reference for the industry.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51336011 and 51607188)the China Postdoctoral Science Foundation(Grant No.2014M562446)the PhD Research Startup Foundation of Xi’an University of Technology(Grant No.256081802)
文摘Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow control by microsecond dielectric barrier discharge(μs-DBD), and by nanosecond dielectric barrier discharge(NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, theμs-DBD is implemented on an unmanned aerial vehicle(UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87 m, and the airspeed is no less than 30 m/s. The flight data, static pressure data,and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3° and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons,which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2013/B13020312)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes,for the People’s Republic of China(Grant No.201001052)the Innovative Project of Scientific Research for Postgraduates in Ordinary Universities of Jiangsu Province(Grant No.CXZZ11_0433)
文摘The Irtysh River is an intemational river partially joining the territories of China, Kazakhstan, and Russia. Cascade reservoirs have been constructed in the upper reaches of the river and their effects on the seasonal discharge of the middle and lower reaches were analyzed considering the mean and dispersion of the seasonal discharge. The Lepage test, which is a nonparametric, two-sample test for detecting location and dispersion, was used to measure the significance of difference between the pre-dam and post-dam seasonal discharge. The results show that the reservoirs' effects on the seasonal discharge varied with the season. In the middle reaches of the river, the summer and autumn discharge decreased significantly and their inter-annual variabilities also decreased significantly. The summer and autumn precipitation over the Irtysh River Basin changed little before and after the operation of the reservoir, which indicates that the discharge changes mainly due to water storage of the reservoirs. The reservoirs store water in summer and autumn and store more water in a wet year, which leads to the reduction of the mean and dispersion of the summer and autumn discharge. The winter discharge increased significantly because the reservoirs released water for power generation. The spring discharge changed slightly. In the lower reaches, only the winter discharge increased significantly, and the other seasonal discharge changed slightly. The reservoirs' effects on the seasonal discharge are more significant in the middle reaches than in the lower reaches.
文摘Partial discharge test on a transformer is carried out according to the items in IEC 60. During the test, unproved measuring system is calibrated by proved system at a voltage no less than 50% the rated testing voltage. The result is then extrapolated linearly, leading to an error related to the distribution of stray capacitance, which varies with the testing frequency, especially to large transformers. In this paper a factor, named the capacitive rise fact, is introduced to assess the rise. The factor can be adjusted to some extent by changing the reactance that is connected to the LV side of the testing circuit to lower the capacity of the power source. However, the factor changes when the voltage divider on the high voltage side is removed after the voltage ratio has been calculated, and a great error is resulted under unfavorable conditios.
基金This work was aupported by the National Foundation(Cranted number 29874030)
文摘The effect of dielectric barrier discharge(DBD)on the interfacial mechanical property of polypropylene fiber reinforced cement is investigated with the aid of single fiber pull out test.The result shows that the DBD treatment improved the adhesion between the PP fiber and the surrounding cement matrix considerably without serious aging.Keywords:dielectric barrier discharge,single fiber pull-out test.
文摘Charge and discharge characteristics of Ni/MH batteries are investigated with experiments. During battery’s working, the voltage, capacity, temperature and internal resistance were recorded, corresponding curves were depicted. Variations of the aforementioned four parameters are differently obvious. Ending criteria of charge and discharge of Ni/MH batteries are discussed on the basis of the curves. Voltage, capacity and temperature of a battery can be used as ending criteria during charge. When discharge takes place, voltage, capacity and internal resistance can be chosen as ending criteria. As a whole, capacity is more suitable for being used as ending criteria of charge and discharge than the other three parameters. At last, the capacity of a battery is recommended to be ending criteria of charge and discharge. The conclusions will provide references to different capacity Ni/MH batteries for electric vehicles.
文摘Cheongpyeong Dam was built in 1943 for the purpose of power generation. Since its construction, discharge flow data based on a theoretical formula have been used to the present times and this leads to a problem of accurate discharge flow information not being available. In particular, Cheongpyeong Dam has been partially repaired and modified to maintain the dam structure over a long period of time and is not being properly reflected with changes at the downstream of the river caused by river improvement projects and sedimentation in reservoir. With a goal to improve Cheongpyeong Dam discharge flow calculation, this study aimed at verifying discharge capability and discharge flow by damper opening in relation to the previously suggested discharge flow through a hydraulic model test based on an accurate reproduction of the dam structure and surrounding topographies as in the present conditions. In this study, a hydraulic model test was conducted to examine the discharge flow of Cheongpyeong Dam. In addition, a comparative examination was carried out against the existing discharge flow proposed using theoretical equations. As a verification of the discharge flow of Cheongpyeong Dam, discharge flows in all sluices and a single sluice were examined. Then, the impact of sluice interference caused by the dam structure consisting with 24 sluices was investigated. As a result of the examination, it was found that the difference between discharge flow calculated using the existing theoretical equations and discharge flow derived from the hydraulic model test was insignificant. Based on the results of hydraulic model test, a formula to estimate stage-discharge flow at a sluice was derived and suggested.
基金support by the 11th Five Year Key Project of China’s National Scientific Supporting Plan(Grant No.2006BAB04A03)the Hydraulic Engineering Project from the Water Resources Department of Jiangsu Province(Grant No.2010023)
文摘Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft suction box and a siphon-type discharge passage with a vacuum breaker as the cutoff device was developed , which possesses such advantages as simple structure , reliable cutoff , and high energy performance.Taking some pumping stations as the case studies , in the light of the specified operation conditions , the hydraulic optimal design of the shaft-type tubular pumping system was determined and the optimized shape of the system was recommended.The performance prediction based on the computational fluid dynamics methodology was determined and the model test verification was conducted.The results show that the predicted data agree with the experimental head and efficiency so that both methods can be used to determine the performance of a real pumping station.Finally , the in-situ measurements of a pumping station during the commissioning period further verified that the shaft-type tubular pumping station with a siphon discharge passage is of higher efficiency , more reliable and stable.
基金supported by the National Natural Science Foundation of China (Grant No 50579084)the Foundation of the Nanjing Hydraulic Research Institute (Grant No Y10705)
文摘By combining the results of prototype observation of flood discharge atomization at the Wujiangdu Hydropower Station, and by adopting the serial model test method, the model scale effect was examined, the influences of the Reynolds and Weber numbers of water flow on the rain intensity of flood discharge atomization were analyzed and a rain intensity conversion relation was established. It is demonstrated that the level of atomization follows the geometric similarity relations and it is possible to ignore the influence of the surface tension of the flow when the Weber number is greater than 500. Despite limitations such as incomplete data sets, it is undoubtedly helpful to study the scale effect of atomization flow, and it is beneficial to identify the rules of the model test results in order to extrapolate to prototype prediction.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175140 and 11004157)the Foundation of National Key Laboratory of Space Microwave Technology of China(Grant No.9140C530101130C53013)
文摘In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiated by a non- focused electron beam. Electron scattering and transport processes in the sample are simulated with the Monte Carlo and the finite-different time-domain (FDTD) methods, respectively. The properties of charge and discharge processes are presented by the evolution of internal currents, charge quantity, surface potential, and discharge time. Internal charge accumulation in the sample may reach saturation by primary electron (PE) irradiation providing the charge duration is enough. Internal free electrons will run off to the ground in the form of leakage current due to charge diffusion and drift during the discharge process after irradiation, while trapped electrons remain. The negative surface potential determined by the charging quantity decreases to its saturation in the charge process, and then increases in the discharge process. A larger thickness of the PMMA film will result in greater charge amount and surface potential in charge saturation and in final discharge state, while the electron mobility of the material has little effects on the final discharge state. Moreover, discharge time is less for smaller thickness or larger electron mobility. The presented results can be helpful for estimating and weakening the charging of insulating samples especially under the intermittent electron beam irradiation in related surface analysis or measurement.
基金the financial support from the National Natural Science Foundation of China(51672033,U1610255,U1703251).
文摘Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.
基金the financial support from National Natural Science Foundation of China (No. 51607128)Natural Science Foundation of Hubei Province (No. 2016CFB111)China Postdoctoral Science Foundation (No. 2016M602353)
文摘In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influence, a surface charge measurement system was constructed, and three types of discharge, i.e. surface discharge, and low intensity and high intensity coronas, were introduced to cause surface charge accumulation. The decay behavior of surface charges after different types of discharge was obtained at various temperatures. It was found that total surface charges monotonically decreased with time, and the decay rate became larger as temperature increased. However, after a surface discharge or a high intensity corona, surface charge density in the local area appeared to fluctuate during the decay process. Compared with this, the fluctuation of surface charge density was not observed after a low intensity corona. The mechanisms of surface charge accumulation and decay were analysed. Moreover, a microscopic physical model involving charge production, accumulation, and decay was proposed so that the experimental results could be explained.
基金National Natural Science Foundation of China(No.50477027)
文摘Using a unipolar pulse with the rise time and the pulse duration in the order of microsecond as the primary pulse, a nanosecond pulse with the repetitive frequency of several kilohertz is generated by a spark gap switch. By varying both the inter-pulse duration and the pulse frequency, the voltage recovery rate of the spark gap switch is investigated at different working conditions such as the gas pressure, the gas composition as well as the bias voltage. The results reveal that either increase in gas pressure or addition of SF6 to the air can increase the voltage recovery rate. The effect of gas composition on the voltage recovery rate is discussed based on the transferring and distribution of the residual space charges. The repetitive nanosecond pulse source is also applied to the generation of large volume, and the discharge currents are measured to investigate the effect of pulse repetition rate on the large volume streamer discharge.
文摘To investigate the effect of the rib structure on the discharge characteristics of the plasma display panel, the potential distribution, particles density distribution and ions incident angle distribution were examined by simulation of a two-dimensional particle-in-cell/Monte Carlo collision, with two kinds of rib structure: the stripe rib structure and the Waffle rib structure. The results showed that the distribution of electric potential at the corner of the discharge cell was almost the same for these two rib structures while in the centre there was a difference between these two rib structures. The striation phenomenon could be observed in both cases. The distribution of density also indicated that the striation phenomenon was accompanied by the firing of discharge, and the Waffle rib structure might reduce the density humps. In the cell with a stripe rib structure, the profiles of the surface charge density along the sustained dielectric layer presented a better fluctuating distribution than that in the cell with a Waffle rib structure. The spatial potential and particle density in the discharge bulk showed that the Waffle ribs could weaken the striation phenomenon, which could be explained by the decrease in the particle numbers in the discharge cell. The simulation results of the ion incident angle showed that most ions impacted the sustained dielectric layer in the normal stripe rib cell with an incident angle in the range of 6° to 19° while with the Waffle rib structure the incident angle of most ions was in the range of 4° to 19°. The Waffle rib structure did not affect the angle distribution of incident ions significantly.
基金supported by National Key Research and Development Plan of China(No.2016YFC0401001)。
文摘The corona discharges provide an efficient way to induce precipitation or eliminate fog by increasing ion density in the open air.In this paper,one bipolar corona discharge array(positive and negative high voltage coupled simultaneously)which can generate high densities of positive and negative ions is developed.The comparison between bipolar corona discharge array and unipolar corona discharge array(positive or negative coupled only)indicates that bipolar corona discharge array can generate~3 times higher ion density than unipolar corona discharge array.More charged aerosols are produced through collisions between ions and aerosols.The collision rate between aerosols is increased substantially by the attractive forces between positively and negatively charged aerosols.The deposition of aerosols induced by bipolar discharges is 25.7%higher than that of unipolar discharges at the humidity super-saturation condition.Therefore,the bipolar corona discharge system is a new option for the large scale ion sources used for artificial weather modification.
基金Project(50134020) supported by the National Natural Science Foundation of China
文摘Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and compared with that of traditional Ni(OH)2. The results show that the spherical nickel hydroxide consists of (Ni(OH)2) spheres with a reticulate structure of platelet-like, which is almost arranged radially and the crystalline grains intervene and connect with each other to form a three-dimensional net. The spherical Ni(OH)2 particle is full of pores, crannies between cleave planes. It is supposed that this structure is beneficial to the structural stability for the spherical particles during the charge/discharge processes and can improve the cycle life of the electrode; the pores and the crannies in spherical particles can shorten the proton diffusion distance and speed its velocity, which may result in that the local polarization is lowered. The electrochemical performances of the spherical Ni(OH)2 are improved by enhancing the conducting properties of the crystalline lattice due to its quick proton diffusion.
文摘Theoretical study on the electronic structures and related properties of 2,2,6,6-tetramethyl- l-piperidinyloxy (TEMPO) and its cationic lipid derivates in the charge/discharge processes has been carried out using the density functional theory (DFT) at the (U)B3LYP/6-31G(d,p) or 6-31+G(d,p) level. The changes and regularities of geometric and electronic properties of these compounds in the charge/discharge processes were revealed in detail. The compu- tational results show that the substitute group plays a very important role in the electronic structures and related properties of TEMPOs during the charge/discharge processes. It is very interesting to find that after getting an electron, TEMPO is more stable in singlet state but the lipid is more stable in triplet state. For TEMPO, both the charge and the discharge processes greatly influence the electronic properties of N and O atoms of the radical part. For the cationic lipid, the discharge process mainly influences the pyridinium head and the charge process mainly influences the free radical head. Moreover, the solvent effect plays an important role in some bond lengths and the charge population of the free radical head. In addition, the UV-Vis absorption spectra simulated using TDDFT at the 6-31G(d,p) with the experimental ones. of TEMPO and the lipid were calculated and or 6-31+G(d,p) level, in satisfying agreement