期刊文献+

A Study on Physical Model Test for Cheongpyeong Dam Discharge Recalculation 被引量:1

A Study on Physical Model Test for Cheongpyeong Dam Discharge Recalculation
在线阅读 下载PDF
导出
摘要 Cheongpyeong Dam was built in 1943 for the purpose of power generation. Since its construction, discharge flow data based on a theoretical formula have been used to the present times and this leads to a problem of accurate discharge flow information not being available. In particular, Cheongpyeong Dam has been partially repaired and modified to maintain the dam structure over a long period of time and is not being properly reflected with changes at the downstream of the river caused by river improvement projects and sedimentation in reservoir. With a goal to improve Cheongpyeong Dam discharge flow calculation, this study aimed at verifying discharge capability and discharge flow by damper opening in relation to the previously suggested discharge flow through a hydraulic model test based on an accurate reproduction of the dam structure and surrounding topographies as in the present conditions. In this study, a hydraulic model test was conducted to examine the discharge flow of Cheongpyeong Dam. In addition, a comparative examination was carried out against the existing discharge flow proposed using theoretical equations. As a verification of the discharge flow of Cheongpyeong Dam, discharge flows in all sluices and a single sluice were examined. Then, the impact of sluice interference caused by the dam structure consisting with 24 sluices was investigated. As a result of the examination, it was found that the difference between discharge flow calculated using the existing theoretical equations and discharge flow derived from the hydraulic model test was insignificant. Based on the results of hydraulic model test, a formula to estimate stage-discharge flow at a sluice was derived and suggested. Cheongpyeong Dam was built in 1943 for the purpose of power generation. Since its construction, discharge flow data based on a theoretical formula have been used to the present times and this leads to a problem of accurate discharge flow information not being available. In particular, Cheongpyeong Dam has been partially repaired and modified to maintain the dam structure over a long period of time and is not being properly reflected with changes at the downstream of the river caused by river improvement projects and sedimentation in reservoir. With a goal to improve Cheongpyeong Dam discharge flow calculation, this study aimed at verifying discharge capability and discharge flow by damper opening in relation to the previously suggested discharge flow through a hydraulic model test based on an accurate reproduction of the dam structure and surrounding topographies as in the present conditions. In this study, a hydraulic model test was conducted to examine the discharge flow of Cheongpyeong Dam. In addition, a comparative examination was carried out against the existing discharge flow proposed using theoretical equations. As a verification of the discharge flow of Cheongpyeong Dam, discharge flows in all sluices and a single sluice were examined. Then, the impact of sluice interference caused by the dam structure consisting with 24 sluices was investigated. As a result of the examination, it was found that the difference between discharge flow calculated using the existing theoretical equations and discharge flow derived from the hydraulic model test was insignificant. Based on the results of hydraulic model test, a formula to estimate stage-discharge flow at a sluice was derived and suggested.
出处 《Engineering(科研)》 2014年第11期731-742,共12页 工程(英文)(1947-3931)
关键词 Cheongpyeong DAM HYDRAULIC Model TEST STAGE-DISCHARGE CURVE Recalculation Cheongpyeong Dam Hydraulic Model Test Stage-Discharge Curve Recalculation
  • 相关文献

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部