期刊文献+
共找到47,757篇文章
< 1 2 250 >
每页显示 20 50 100
Velocity estimation of moving targets with stepped-frequency radar based on Doppler frequency difference 被引量:1
1
作者 王昊飞 任丽香 《Journal of Beijing Institute of Technology》 EI CAS 2014年第1期78-82,共5页
By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the ... By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the estimated velocity is inversely proportional to the frequency step size instead of the carrier frequency of the transmitted signal as the pulse-Doppler (PD) processing, the new algorithm can achieve much wider unambiguous velocity range. Furthermore, non-coherent integration of the sub-pulses with different carrier frequencies can be implemented by Hough trans- form to improve the anti-noise performance. Besides, field experimental results show that the high range resolution profile (HRRP) of a bullet with high speed can be reconstructed correctly without distortion. 展开更多
关键词 stepped-frequency Doppler frequency difference Hough transform velocity estimation
在线阅读 下载PDF
Velocity compensation methods for LPRF modulated frequency stepped-frequency(MFSF) radar 被引量:5
2
作者 Guifen Xia Hongyan Su Peikang Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期746-751,共6页
In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar... In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application. 展开更多
关键词 modulated frequency stepped-frequency(MFSF) radar low pulse repetition frequency(LPRF) cross-correlation inner frame range-Doppler coupling.
在线阅读 下载PDF
An investigation on the wind profiles and gravity wave dynamics in MLT region based on the meteor radars from the Meridian Project
3
作者 Tai Liu Zhe Wang +2 位作者 MengXi Shi Willie Soon ShiCan Qiu 《Earth and Planetary Physics》 EI CAS 2025年第1期29-38,共10页
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri... The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km. 展开更多
关键词 meteor radar wind field gravity wave Lomb−Scargle method
在线阅读 下载PDF
Mesospheric tide comparisons at low latitudes observed by two collocated meteor radars
4
作者 Jian Li Wen Yi +6 位作者 XiangHui Xue Jie Zeng HaiLun Ye JianYuan Wang JinSong Chen Na Li TingDi Chen 《Earth and Planetary Physics》 EI CAS 2025年第1期54-68,共15页
Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesospher... Accurate knowledge of mesospheric winds and waves is essential for studying the dynamics and climate in the mesosphere and lower thermosphere(MLT)region.In this study,we conduct a comparative analysis of the mesosphere tidal results obtained from two adjacent meteor radars at low latitudes in Kunming,China,from November 2013 to December 2014.These two radars operate at different frequencies of 37.5 MHz and 53.1 MHz,respectively.However,overall good agreement is observed between the two radars in terms of horizontal winds and tide observations.The results show that the dominant tidal waves of the zonal and meridional winds are diurnal and semidiurnal tides.Moreover,we conduct an exhaustive statistical analysis to compare the tidal amplitudes and vertical wavelengths recorded by the dual radar systems,which reveals a high degree of alignment in tidal dynamics.The investigation includes variances and covariances of tidal amplitudes,which demonstrate remarkable consistency across measurements from both radars.This finding highlights clear uniformity in the mesospheric tidal patterns observed at low latitudes by the two neighboring meteor radars.Results of the comparative analysis specifically underscore the significant correlation in vertical wavelength measurements,validating the robustness of radar observations for tidal research. 展开更多
关键词 mesosphere and lower thermosphere region meteor radar mesospheric winds TIDES
在线阅读 下载PDF
MICRO-MOTION TARGET SENSING BY STEPPED-FREQUENCY CONTINUOUS-WAVE RADAR
5
作者 Kong Lingjiang Zhou Yongshun Cui Guolong Yang Jianyu 《Journal of Electronics(China)》 2009年第6期782-787,共6页
Mechanical micro-vibration of a target may induce phase modulations on the radar echo,and the vibration can be detected to identify micro-motion target. In this paper,a new method to detect a micro-motion target and o... Mechanical micro-vibration of a target may induce phase modulations on the radar echo,and the vibration can be detected to identify micro-motion target. In this paper,a new method to detect a micro-motion target and obtain its range and micro-motion frequency is proposed in which multiple periods stepped-frequency continuous-wave signal and Moving Target Indication (MTI) filter are adopted. The simulation results illustrate the validity of this method and present the detection of the target range and the vibration frequency. The experiment gives promising results. 展开更多
关键词 MICRO-MOTION MICRO-DOPPLER stepped-frequency continuous-wave MTI (Moving TargetIndication)
在线阅读 下载PDF
Design of mobile stage location system based on two-dimensional laser radar
6
作者 WANG Bo ZHU Ping +1 位作者 ZHENG Qingsong YANG Jiaqi 《High Technology Letters》 2025年第1期20-31,共12页
This paper addresses the design problem of an embedded mobile stage location system based on a two-dimensional laser radar.The mobile stage is a piece of important performance equipment in art performances,and the pos... This paper addresses the design problem of an embedded mobile stage location system based on a two-dimensional laser radar.The mobile stage is a piece of important performance equipment in art performances,and the positioning problem is one of the key issues in the control of the mobile stage.Both hardware and software are developed for the mobile stage.The hardware of the location system consists of a laser radar,an embedded control board,a wireless router,and a motion control unit.The software of the location system includes embedded software and human-machine interface(HMI),and they are designed to achieve the functions of real-time positioning and monitoring.First,a novel landmark identification method is presented based on the landmark reflection intensities and shapes.Then,the initial pose of the mobile stage is calculated by using the triangle matching algorithm and the least squares method.A distributed fusion Kalman filtering algorithm is applied to fuse landmark information and odometer information to achieve real-time positioning of the mobile stage.The designed system has been implemented in a practical mobile stage,and the results demonstrate that the location system can achieve a high positioning precision in both the stationary and moving scenarios. 展开更多
关键词 mobile stage positioning laser radar Kalman filter distributed fusion
在线阅读 下载PDF
An integrated PHM framework for radar systems through system structural decomposition
7
作者 WANG Hong KULEVOME Delanyo Kwame Bensah ZHAO Zi’an 《Journal of Systems Engineering and Electronics》 2025年第1期95-107,共13页
Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for rad... Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for radar systems is limited. Furthermore, typical PHM approaches are centralized, do not scale well, and are challenging to implement.This paper proposes an integrated PHM framework for radar systems based on system structural decomposition to enhance reliability and support maintenance actions. The complexity challenge associated with implementing PHM at the system level is addressed by dividing the radar system into subsystems. Subsequently, optimal measurement point selection and sensor placement algorithms are formulated for effective data acquisition. Local modules are developed for each subsystem health assessment, fault diagnosis, and fault prediction without a centralized controller. Maintenance decisions are based on each local module’s fault diagnosis and prediction results. To further improve the effectiveness of the prognostics stage, the feasibility of integrating deep learning (DL) models is also investigated.Several experiments with different degradation patterns are performed to evaluate the effectiveness of the framework’s DLbased prognostics model. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar systems. 展开更多
关键词 deep learning prognostics and health management(PHM) radar systems remaining useful life(RUL)
在线阅读 下载PDF
A target parameter estimation method via atom-reconstruction in radar mainlobe jamming 被引量:1
8
作者 ZHOU Bilei LIU Weijian +5 位作者 LI Rongfeng CHEN Hui ZHANG Liang DU Qinglei LI Binbin CHEN Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期350-360,共11页
Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target... Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target parameters and target direction estimation is difficult in radar MLJ.A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper.The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle.Precisely,the eigen-projection matrix processing(EMP)algorithm is adopted to suppress the MLJ,and the target range is estimated effectively through the beamforming and pulse compression.Then the target angle can be effectively estimated by the atom-reconstruction method.Without any prior knowledge,the MLJ can be canceled,and the angle estimation accuracy is well preserved.Furthermore,the proposed method does not have strict requirement for radar array construction,and it can be applied for linear array and planar array.Moreover,the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth(or elevation)equals to the jamming azimuth(or elevation),because the MLJ is suppressed in spatial plane dimension. 展开更多
关键词 mainlobe jamming ANTI-JAMMING atom-reconstruction radar
在线阅读 下载PDF
Metal–Organic Gel Leading to Customized Magnetic‑Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances 被引量:2
9
作者 Xin Li Ruizhe Hu +7 位作者 Zhiqiang Xiong Dan Wang Zhixia Zhang Chongbo Liu Xiaojun Zeng Dezhi Chen Renchao Che Xuliang Nie 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期36-52,共17页
Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic h... Metal–organic gel(MOG)derived composites are promising multi-functional materials due to their alterable composition,identifiable chemical homogeneity,tunable shape,and porous structure.Herein,stable metal–organic hydrogels are prepared by regulating the complexation effect,solution polarity and curing speed.Meanwhile,collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination.Subsequently,two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect.FeCo/nitrogen-doped carbon(NC)aerogel demonstrates an ultra-strong microwave absorption of−85 dB at an ultra-low loading of 5%.After reducing the time taken by atom shifting,a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained,which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles.Furthermore,both aerogels show excellent thermal insulation property,and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology.The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels,which will enable the development and application of novel and lightweight stealth coatings. 展开更多
关键词 Metal-organic gels Heterometallic magnetic coupling radar stealth Thermal insulation Computer simulation technology
在线阅读 下载PDF
Overview of radar detection methods for low altitude targets in marine environments 被引量:1
10
作者 YANG Yong YANG Boyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期1-13,共13页
In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance... In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments. 展开更多
关键词 radar sea clutter multipath scattering detection low altitude target
在线阅读 下载PDF
Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning 被引量:1
11
作者 Jiang HUANGFU Zhiqun HU +2 位作者 Jiafeng ZHENG Lirong WANG Yongjie ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1147-1160,共14页
Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a mult... Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods. 展开更多
关键词 polarimetric radar quantitative precipitation estimation deep learning single-parameter network multi-parameter network
在线阅读 下载PDF
Modulated-ISRJ rejection using online dictionary learning for synthetic aperture radar imagery 被引量:1
12
作者 WEI Shaopeng ZHANG Lei +1 位作者 LU Jingyue LIU Hongwei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期316-329,共14页
In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid... In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods. 展开更多
关键词 synthetic aperture radar(SAR) modulated interrupt sampling jamming(MISRJ) online dictionary learning
在线阅读 下载PDF
Analysis of the joint detection capability of the SMILE satellite and EISCAT-3D radar 被引量:2
13
作者 JiaoJiao Zhang TianRan Sun +7 位作者 XiZheng Yu DaLin Li Hang Li JiaQi Guo ZongHua Ding Tao Chen Jian Wu Chi Wang 《Earth and Planetary Physics》 EI CSCD 2024年第1期299-306,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite European Incoherent Scatter Sciences Association(EISCAT)-3D radar joint detection
在线阅读 下载PDF
Co-Sharing Waveform Design for Millimeter-Wave Radar Communication Systems
14
作者 Cui Gaofeng He Mengmin +2 位作者 Xu Lexi Wang Changheng Wang Weidong 《China Communications》 SCIE CSCD 2024年第6期305-318,共14页
Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be co... Millimeter-wave(mmWave)radar communication has emerged as an important technique for future wireless systems.However,the interference between the radar signal and communication data is the main issue that should be considered for the joint radar communication system.In this paper,a co-sharing waveform(CSW)is proposed to achieve communication and radar sensing simultaneously.To eliminate the co-interference between the communication and sensing signal,signal splitting and processing methods for communication data demodulation and radar signal processing are given respectively.Simulation results show that the bit error rate(BER)of CSW is close to that of the pure communication waveform.Moreover,the proposed CSW can achieve better performance than the existing waveforms in terms of range and velocity estimation. 展开更多
关键词 co-sharing waveform MILLIMETER-WAVE radar communication radar sensing range and velocity estimation
在线阅读 下载PDF
Anti-swarm UAV radar system based on detection data fusion
15
作者 WANG Pengfei HU Jinfeng +2 位作者 HU Wen WANG Weiguang DONG Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1167-1176,共10页
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti... There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm. 展开更多
关键词 SWARM radar high resolution deep neural network fusion algorithm
在线阅读 下载PDF
Efficient 2-D MUSIC algorithm for super-resolution moving target tracking based on an FMCW radar
16
作者 Xuchong Yi Shuangxi Zhang Yuxuan Zhou 《Geodesy and Geodynamics》 EI CSCD 2024年第5期504-515,共12页
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c... Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios. 展开更多
关键词 2D-MUSIC FMCW radar Moving target tracking SUPER-RESOLUTION Algorithm optimization
在线阅读 下载PDF
Probabilistic modeling of multifunction radars with autoregressive kernel mixture network
17
作者 Hancong Feng Kaili.Jiang +4 位作者 Zhixing Zhou Yuxin Zhao Kailun Tian Haixin Yan Bin Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期275-288,共14页
The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai... The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection. 展开更多
关键词 Probabilistic forecasting Multifunction radar Unsupervised learning Change point detection Outlier detection
在线阅读 下载PDF
Improving Satellite-Retrieved Cloud Base Height with Ground-Based Cloud Radar Measurements
18
作者 Zhonghui TAN Ju WANG +3 位作者 Jianping GUO Chao LIU Miao ZHANG Shuo MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2131-2140,共10页
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p... Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates. 展开更多
关键词 cloud base height passive radiometer ground-based cloud radar remote sensing
在线阅读 下载PDF
Wireless Networked Cognitive Radar System:Overview and Design Guidelines
19
作者 Wu Qinhao Wang Hongqiang +1 位作者 Zhang Bo Wang Shuai 《China Communications》 SCIE CSCD 2024年第12期1-27,共27页
Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,... Cognitive radar is a concept proposed by Simon Haykin in 2006 as a new generation of radar system that imitates human cognitive features.Different from the adaptive signal processing at the receiver in adaptive radar,the cognitive radar realizes closedloop adaptive policy adjustment of both transmitter and receiver in the continuous interaction with the environment.As a networked radar may significantly enhance the flexibility and robustness than its monostatic counterpart,the wireless networked cognitive radar(WNCR)attracts increasing research.This article firstly reviews the concept and development of cognitive radar,especially the related researches of networked cognitive radar.Then,the co-design of cognitive radar and communication is investigated.Although the communication quality between radar sensing nodes is the premise of detection,tracking,imaging and anti-jamming performance of the WNCR,the latest researches seldom consider the communication architecture design for WNCR.Therefore,this article mainly focuses on the proposal of WNCR concept based on the researches of cognitive radar and analyzes research challenges of WNCR system in practical application,and the corresponding guidelines are proposed to inspire future research. 展开更多
关键词 electronic countermeasures networked cognitive radar OODA loop radar-communication co-design spectrum sensing
在线阅读 下载PDF
A New Algorithm of Rain Type Classification for GPM Dual-Frequency Precipitation Radar in Summer Tibetan Plateau
20
作者 Yunfei FU Liu YANG +4 位作者 Zhenhao WU Peng ZHANG Songyan GU Lin CHEN Sun NAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2093-2111,共19页
In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2... In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2 data in summer from 2014 to 2020. It was found that the DPR rain type classification algorithm(simply called DPR algorithm) has mis-identification problems in two aspects in summer TP. In the new algorithm of rain type classification in summer TP,four rain types are classified by using new thresholds, such as the maximum reflectivity factor, the difference between the maximum reflectivity factor and the background maximum reflectivity factor, and the echo top height. In the threshold of the maximum reflectivity factors, 30 d BZ and 18 d BZ are both thresholds to separate strong convective precipitation, weak convective precipitation and weak precipitation. The results illustrate obvious differences of radar reflectivity factor and vertical velocity among the three rain types in summer TP, such as the reflectivity factor of most strong convective precipitation distributes from 15 d BZ to near 35 d BZ from 4 km to 13 km, and increases almost linearly with the decrease in height. For most weak convective precipitation, the reflectivity factor distributes from 15 d BZ to 28 d BZ with the height from 4 km to 9 km. For weak precipitation, the reflectivity factor mainly distributes in range of 15–25 d BZ with height within 4–10 km. It is also shows that weak precipitation is the dominant rain type in summer TP, accounting for 40%–80%,followed by weak convective precipitation(25%–40%), and strong convective precipitation has the least proportion(less than 30%). 展开更多
关键词 satellite precipitation radar rain type classification method Tibetan Plateau strong convective precipitation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部