期刊文献+

Probabilistic modeling of multifunction radars with autoregressive kernel mixture network

在线阅读 下载PDF
导出
摘要 The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.
出处 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期275-288,共14页 Defence Technology
基金 supported by the National Natural Science Foundation of China under Grant 62301119。
  • 相关文献

参考文献1

二级参考文献16

  • 1贲德.机载有源相控阵火控雷达的新进展及发展趋势[J].现代雷达,2008,30(1):1-4. 被引量:26
  • 2Gonzalez R C,Thomason M G.句法模式识别[M].濮群,徐凤家,徐光佑,译.北京:清华大学出版社,1984.
  • 3Visnevski N. Syntactic modeling of mufti-function radar[D]. Canada : McMaster university, 2005.
  • 4Visnevski N, Haykin S,Krishnamurthy V.Hidden Markov models for radar pulse train analysis in electronic warfare[C]//IEEE in- ternational conference on acoustics, speech and signa[ processing. Phliadel phia, USA : IEEE press, 2005 : 597-600.
  • 5Visnevski N, Krishnamurthy V, Wang A, et al.Syntactic mod- eling and signal processing of multifunction radars: a stochas tie context-free grammar approach [J] Proceedings of the IEEE,2007,95(5) : 1000-1025.
  • 6Mustafa Fanaswala, Vikram Krishnamurthy. Detection of a nomalous trajectory patterns in target tracking via stochastic context-free grammars and reciprocal process models[J]. IEEE journal of selected topics in signal processing, 2013,7 (1) :76-90.
  • 7Visnevski N,Dilkes F A, Haykin S. Non-sel5embedding con- text-free grammars for multi-function radar modeling elec tronic warfare application[C]//IEEE international radar con- ference.Arlington,USA:IEEE press,2005 = 669-674.
  • 8Arasaramam I, Haykin S, Kirubarajan T. Tracking the mode of operation of multi-function radars[C]//IEEE conference on radar.New York: IEEE press, 2006: 233-238.
  • 9Wang A, Krishnamurthy V. Signal interpretation of multi- function radars: modeling and statistical signal processing with stochastic context free grammar[J]. IEEE transactions on signal processing,2008,56(3) : 1106-1119.
  • 10Visnevski N,Krishnamurthy V, Haykin S, et al. Mufti-func tion radar emitter modelling: a stochastic discrete event sys- tem approach[C]//Proceedings of the 42nd IEEE conference on decision and control.Maui Hawaii: IEEE press, 2003 : 6295- 6300.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部