二氧化硅(SiO_(2))薄膜因其卓越的光学性能,在半导体器件、集成电路、光学涂层等领域具有巨大的应用潜力。然而,SiO_(2)薄膜制备过程中面临表面粗糙度、杂质控制和致密性等问题。为解决这些问题,研究者们通过工艺改进和表面修饰等手段...二氧化硅(SiO_(2))薄膜因其卓越的光学性能,在半导体器件、集成电路、光学涂层等领域具有巨大的应用潜力。然而,SiO_(2)薄膜制备过程中面临表面粗糙度、杂质控制和致密性等问题。为解决这些问题,研究者们通过工艺改进和表面修饰等手段来提高SiO_(2)薄膜的性能。在众多SiO_(2)薄膜制备技术中,等离子体增强化学气相沉积(Plasma-Enhanced Chemical Vapor Deposition,PECVD)技术由于沉积SiO_(2)薄膜所需温度低、原位生长等优势,成为制备SiO_(2)薄膜最常用的方法。综述了用PECVD技术制备SiO_(2)薄膜的发展历程,并探讨了关键工艺参数和后处理工艺对薄膜质量的影响。对PECVD技术的深入研究,有助于实现对SiO_(2)薄膜生长的更精准控制,进一步拓展其广泛的应用前景。展开更多
采用了等离子体增强化学气相沉积法(plas-ma-enhanced chemical vapor deposition,PECVD)在聚酰亚胺(polyimide,PI)牺牲层上生长氮化硅薄膜,讨论沉积温度、射频功率、反应气体流量比等工艺参数对氮化硅薄膜的生长速率、氮硅比、残余应...采用了等离子体增强化学气相沉积法(plas-ma-enhanced chemical vapor deposition,PECVD)在聚酰亚胺(polyimide,PI)牺牲层上生长氮化硅薄膜,讨论沉积温度、射频功率、反应气体流量比等工艺参数对氮化硅薄膜的生长速率、氮硅比、残余应力等性能的影响,得到适合制作接触式射频MEMS开关中悬梁的氮化硅薄膜的最佳工艺条件。展开更多
文摘二氧化硅(SiO_(2))薄膜因其卓越的光学性能,在半导体器件、集成电路、光学涂层等领域具有巨大的应用潜力。然而,SiO_(2)薄膜制备过程中面临表面粗糙度、杂质控制和致密性等问题。为解决这些问题,研究者们通过工艺改进和表面修饰等手段来提高SiO_(2)薄膜的性能。在众多SiO_(2)薄膜制备技术中,等离子体增强化学气相沉积(Plasma-Enhanced Chemical Vapor Deposition,PECVD)技术由于沉积SiO_(2)薄膜所需温度低、原位生长等优势,成为制备SiO_(2)薄膜最常用的方法。综述了用PECVD技术制备SiO_(2)薄膜的发展历程,并探讨了关键工艺参数和后处理工艺对薄膜质量的影响。对PECVD技术的深入研究,有助于实现对SiO_(2)薄膜生长的更精准控制,进一步拓展其广泛的应用前景。
文摘采用了等离子体增强化学气相沉积法(plas-ma-enhanced chemical vapor deposition,PECVD)在聚酰亚胺(polyimide,PI)牺牲层上生长氮化硅薄膜,讨论沉积温度、射频功率、反应气体流量比等工艺参数对氮化硅薄膜的生长速率、氮硅比、残余应力等性能的影响,得到适合制作接触式射频MEMS开关中悬梁的氮化硅薄膜的最佳工艺条件。